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CRACKING OF A GRADED HALF PLANE
DUE TO SLIDING CONTACT —
Serkan Dag and Fazil Erdogan

ME-MECH. Department, Lehigh University, Bethlehem, PA 18015
Abstract

In this report the initiation and subcritical growth of surface cracks in graded materials
due to sliding contact are considered. After a brief introduction the general coupled crack/contact
problem for a semi-infinite graded medium subjected to a sliding rigid stamp of arbitrary profile
is formulated. Solving the problem in the absence of any cracks, the complete stress state on the
surface of the medium is evaluated and critical stress that would cause surface crack initiation is
identified. The coupled problem is then solved, stress intensity factors are calculated and some

results are presented.
1. Introduction

Graded materials, also known as functionally graded materials (FGMs) are
multiphase composites with continuously varying volume fractions and, as a result,
thermomechanical properties. Used as coatings and interfacial zones they reduce the
residual and thermal stresses resulting from the material property mismatch, increase the
bonding strength, improve surface properties and provide protection against severe
thermal and chemical environments. Many of the present and potential applications of
FGMs involve contact problems. These are mostly load transfer problems in deformable
solids, generally in the presence of friction as in, for example, bearings, gears, cams,

machine tools and abradable seals in gas turbines. In such applications the concept of
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material property grading appears to be ideally suited to improve the surface properties
and wear-resistance of the components that are in contact. »

From the standpoint of failure mechanics an important aspect of contact problems is
the surface cracking which is caused by friction forces and which invariably leads to
fretting fatigue. In most applications material property grading near the surface is used as
a substitute for homogeneous ceramic coatings. In both cases that is, in both
homogeneous and graded coatings the surface of the medium consists of 100% ceramic
which is generally a brittle solid. Hence, the "maximum tensile stress" criterion may be
used for crack initiation on the surface. Once the crack is initiated, its subcritical growth
under repeated loading by a sliding stamp is controlied by stress intensity factors at the
crack tip. The main objective of this study is, therefore, the evaluation of peak tensile
stresses on the surface for the purpose of studying crack initiation and the stress intensity
factors for modeling the subcritical crack growth. Specifically, the objective is the
examination of the influence of friction coefficient and material nonhomogeneity
parameters on the peak surface stresses and stress intensity factors. The problem is
considered under the assumptions of plane strain, Coulomb friction and linear
nonhomogeneous elasticity.

Studies in contact mechanics in elastic solids were originated by Hertz [1]. The
technical literature on the subject is very extensive. A thorough description of the
underlying solid mechanics problems in homogeneous materials may be found, for
example, in Johnson [2]. Some sample solutions for frictionless contact problems in a
semi-infinite graded medium are given in [3]-[5]. Details of the analysis of homogeneous
substrates with FGM coatings having positive or negative curvatures and extensive

results regarding the stress distribution under plane strain conditions and sliding contact

are discussed in Guler [6].




2. Formulation

The coupled crack/contact problem for a nonhomogeneous half-plane considered in
this study is described in Figure 1. The half plane is in sliding contact with a rigid stamp
of arbitrary profile. The normal and tangential forces transferred by the contact are P and
nP respectively where 7 is the coefficient of friction, and contact area extends from
y=a to y=>b. The half-plane contains a surface crack of length d which is
perpendicular to the surface. In this report, we will formulate the problem and reduce it to
a system of singular integral equations. Solving the integral equations numerically we
will examine the effects of material nonhomogeneity and friction on the stress intensity
factors and contact stresses. Largely, for mathematical expediency it will be assumed that

the elastic parameters of the medium may be approximated by

Figure 1: The general description of the crack/contact problem in a graded medium.

u(z) = poexp(rz), k = constant, (1a,b)




where 1 is the shear modulus, + is the nonhomogeneity parameter, x = 3 — 4v for plane

strain and xk = (3 — v)/(1 + v) for generalized plane stress, v being the Poisson's ratio.

By using the Hooke's law

ulzy) = B (w4 )2+ 3= 005}, 2a)
oz, y) = :(js)l{(m+1)g§+(3—n)g—z}, (2b)
rale) = e 5o + 5 ) 20)
The equilibrium conditions o;; ; = 0 can be expressed as,

(h+1)222 (e — )—Jrzaaa (n+1)g—;f+’y(3—fe)—g—;i=0, (3a)
(”1)222 (x 1)8—2”+23823y+7(ﬁ—1)g§+7(ﬂ—1)%=o. (3b)

In previous studies (e.g. Delale and Erdogan [7]) it was shown that the stress intensity
factors in graded materials are not significantly influenced by the variation in v. Thus, in
this study too, the Poisson's ratio will be assumed to be constant. Following boundary

conditions must be satisfied in the solution of the problem

0::(0,7) =0, 04y(0,y) =0, —o<y<a, b<y<o, (4a,b)
4 0
02y(0,¥) = 104(0,y), _7_01 B9 u(0,y) = f(y), a<y<b, (5a,b)
ow(z,0) =0, Ogy(z,0) =0, 0<z<d, (6a,b)
b
/ 02(0,9)dy = — P, %
Eyy(x: :too) = €p, ®)




where the known function f(y) defines the stamp profile. Note that, in addition to f(y)
the external loads are described by the resultant force P, the remote strain € and the
crack surface tractions given by (6a,b). We also observe that the unknown functions of

the problem may be identified as follows,

:iol %(v(m‘, 0") — v(z,07)) = fi(z), 0<z<d, (92)
209 (1(,0%) - u(e,07)) = folz),  O<z<d (9b)
k+10zx U U RS ’

Uxx(Oa y) = f3(y)a a<y< b. (9C)

In the following sections, we will derive the expressions for the stresses and
displacements in the terms of the unknown functions f;, (j = 1,2,3). The sum of the
expressions obtained for each f; must satisfy the boundary conditions of the problem

given by (4)-(8).

2.1 The contact problem (f; = 0, fo = 0)

In this section, we will determine the stress and displacement field due to stamp
loading, namely f3(y). This can be accomplished by using Fourier transforms. The

displacement components can be expressed as
1 00

u3(2,y) = 5~ / Us(z, p)exp(ipy)dp, (10a)
T —00
1 [ .

v3(z,y) = 2—7;/ Vs(z, p)exp(ipy)dp. (10b)

In (10) subscript 3 stands for the displacements due to stamp loading. Substituting (10) in

(3) following ordinary differential equations are obtained:
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&2U, av; Ay
=22 — -2 - = 1
(k+1) T2 +v(k+ 1) i (k = 1)Us + 2ip T +vip(3 n)V}, 0, (11a)
CdUs . d*Vs Vs 4
2Zp_c-i_$— + ’)"Lp(l‘& - 1)U3 + (I‘E - 1)—(—125- + ’Y(I‘& - 1)-% Y (K', + 1)% =0. (11b)

Assuming a solution of the form exp(sz) following characteristic equation is obtained,

3—K

(s +vs— p* —ilp|63) (s* + s - p* +1ilp|83) =0, &= P (12a,b)
Roots of the characteristic equation are given by
1 ! = 2 -
s1= =357~ 5\/’7 + 4p? + 4i|p|6s, R(s1) <0, (13a)
1 1 5 5 -
$2= =57~ 5\[‘/ + 4p% — 4ilp| 83, R(s2) <0, (13b)
1 1 = 2 ;
3= =37 + 5\/')/ + 4p% + 4i|p|6s, R(s3) > 0, (13¢)
1 1 2 -
sa= =5V 5V +40" —dilplds,  R(se) > 0. (13d)
The displacement components u3 and vz then can be written as
1 [
us(z,y) = =— [ > _Mexp(s;z +ipy)dp, (142)
27 ) _ oo =
1 [
w(zy) = o= [ S MiNexo(sja +ipu)d, (145)
—0%5

where

S i((k+1)s2 +y(k+1)s;+p*(1—kK))
NJ(p) - p(23j +7(3 _ K))) ’ (.7 - 1a2733 4) (15)

Using (2), stresses and displacement derivative can be expressed as follows:




) 1 [ ) :
: (_ )1 o Y (si(k + 1) +ipN;(3 = &) Mjexp(sjz + ipy)dp,  (162)

-0’21

Urz3(x,y) =

o0 2
ops(Z,y) = :(_x)l 5%/ Z(S]’(?} — k) + 1pN;(k + 1)) Mjexp(s;jz + ipy)dp, (16b)

—oo’

Ozy3(2,Y) / Z ip + Njs;)Mexp(s;z + ipy)dp, (16c)
OO]__

0 13

= ==/ i exp(s; + ipy)dp. 16d

8yv.tg(x,y) o [ wzp;MJGXP(Sﬂpr)dp (16d)

Using the boundary conditions given by (4) and (5a), we can write,

- 1 Z si(k + 1) +ipN;(3 — k) Mjexp(ipy)dp =

—00 j=]
_ | f2(y), a<y<b
_{O, —o<y<a, b<y<oo (172)
nfs(y), a<y<b
#o/oo; ip + Njs;) Mexp(ipy)dp = {0, Cco<y<a b<y<oo (17b)

We express M;(p), (j = 1,2) in the following form,
M) = 2-i(o / falt)exp( — ipt)dt. (18)

Then, ¥;(p), (§ = 1,2) is determined from

2

> (si(k + 1) +3pN;(3 = £))¥i(p) = (k- 1), | (192)
j=1

2
> (ip + Nisj)i(p) = . (19b)
i=1

Stresses and displacement derivative for the stamp loading can now be obtained using

(16), (18) and (19).




2.2 The opening mode problem (f> = 0, f3 = 0)

In this section we will determine the stresses and displacement derivatives due to
relative displacement derivative of the crack faces in y - direction, namely fi(z). First,
we will derive the expressions for stresses and displacement derivative for a crack in
infinite plane. Then, the solution for the half-plane (z > 0), will be superimposed to
satisfy the boundary conditions at the free surface = 0. In the solution of the half-plane
problem, we will also consider the symmetry about z-axis. For a crack in infinite plane,

displacement components can be expressed using Fourier transformations as follows:
i 1 o i .
ugz)(:z:,y) = ——/ U1( )(w, y)exp(iwz)dw, (20a)
21 J oo
@) = 5 [ VO vepliva)de, (20b)
2T J _

where subscript 1 stands for the opening mode problem (i.e., fi(z) # 0, fa(z) =0,
f3(z) = 0) and superscript (i) stands for the infinite plane problem. Substituting (20) in

(11) following differential equations are obtained:

d*U avi
(k—1) == + (k + 1) (viw — w?) Uy + (2iw + (3 - K))=— =0, (21a)
dy? dy
au d*v;
(2iw + y(k — 1))d—y1 + (K + 1)—d—y2-1- + (k= 1) (yiw — w*) V1 = 0. (21b)

Assuming a solution of the form exp(ny) the characteristic equation is found to be

33—k

(n? — &in + iw(y + iw)) (n® + 61n + tw(y + w)) =0, & =v P (22a,b)
Roots of the characteristic equation are given by

1 1 2 ; 2
ng= — 561 + -2-\/4w — diwy + 62, R(n1) >0, (232)
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1
ny = =6, + —;-\/4w2 — diwy + 62, R(ng) > 0,

2
1 1
— 14 — = 2 _ 43 2
ng = 251 2\/40) 4ZW’Y+51, §R(n3) <0,
1 1
=28 — = 2 _ 4 2
ng = 261 2\/4w diwy + 67, R(ng4) < 0.

Then, for y < 0 and y > 0 stresses and displacements can be expressed as follows:

y<0

(x,y —/ ZC’exp(njy + wz)dw,

OOJ 1
vl T,y / ZC Ajexp(n;y + iwr)dw,
agx_l) (z,9) 1 27r/ 351](w exp(n;y + wz)dw,
OO]._
ogl)(ﬂ?,y) 1 27r/ ZS;;U(U) Jexp(n;y + iwz)dw,
;lyl)(z ) 27r/ Z n; + wA;)Ciexp(n;y + iwz)dw,

00]_

0
B_yul (z,y) = / ZC’ n;exp(n;y + iwz)dw,

2
:12151] Z Zw K+ 1) + A 'I’L]( K’))ij

=1
’ 2
Sy;u Z(z’w(3 — k) + Ajmi(k + 1))C;
=1

where superscript (i) stands for y < 0.

(23b)

(23c¢)

(23d)

(24a)

(24b)

(24c)

(24d)

(24e)

(241)

(24g)

(24h)




y>0

ulx

vl

(™)

Ozzl (l‘,

(i)

yyl (CB

o

zyl (x

0 @+

Oy

S(l+)

zxly =

S(1+)

yyly —

y) = ——/ ZC-exp(njy + iwz)dw,

00 j=3

/ ZC’ Ajexp(njy + twz)dw,

p(z) 1
5—127r

/ Z x:cl] w)exp n;y + wa)dwa

M .’17) 1 oo 4 it .
Y) = %%/szy(yl)]-(w)exp(njy + wz)dw,
—0s2

oo ]—3

(z,y) ——/ ZC’ niexp(n;y + wr)dw,

4
Z(zw(& +1) + Ani(3 - k))Cj,

Jj=3

Z(zw(3 - K/) + AjTLj(K, + 1))Cj,

Jj=3

y) = u(x) / Z(nj + iwA;)Cjexp(njy + iwz)dw,

(25a)

(25b)

(25¢)

(25d)

(25¢)

(251)

(25g)

(25h)

where superscript (%) stands for y > 0. In (24) and (25) C; (j = 1,2, 3, 4) are unknown

constants and A; is given by

Ajw) = -

n3(k — 1) + (iwy — *)(k + 1)
ni(2iw + v(3 — K))

(26)

For a crack in infinite plane and for the opening mode following boundary conditions

must be satisfied:

Oyy1

Tyt

10

o(z,0) = o )(z,0), — 00 <z < 00,

(27a)




zyl “)(z,0) = zyl 'z, 0), — 00 <z < 00, (27b)

2u0 O ;

ﬁiax( ull )(x 0)—u§ )(:r,O)) =0, —0< <0 (27c)
20 0 [ ) (i7) 0, —w<r<ld<zr<ox
/{+18—x(v1 (2,0) = vy (=, 0)> fl() 0<z<d (27d)

We first express the unknown constants Cj(w) (j = 1,2, 3, 4) as

d
Citw) = = Biw) [ fit)exp— it (28)

Then, by using (24), (25) and (27) the following equations can be obtained to determine
Pj(w)

4 2
> (iw(3 = k) + Ajn;(1 + K)) Pi(w) — Y _(iw(3 — k) + Ajn;(1 + ) Pi(w) = 0,
7=3 j=1

(29a)

4 2
> (n;+ iwA;)Pi(w) = Y (nj + iwA;) Pi(w) = 0, (29b)
=3 J=1

4 2
ZM{ZAJP](LU) - ZA]}DJ(W)} = 1, (290)
7=3 7=1

iw{p4(w) + Py(w) — Py(w) — Py (w)} =0. (29d)

Using (34), (25) and (29) the stresses and the displacement derivative for the opening
mode can be obtained. Note that, if we solve (29) for P;(w) then substitute in (28) and

(24¢), (25¢), we find that

ol )(z,0) = ol )(2,0)=0 (30)

a:yl

11




which is expected due to the symmetry about z-axis. For the opening mode problem
uy(z,y) is an even and v;(z, y) is an odd function of y. In order to sa&isfy the free surface
boundary conditions at z = 0, we will now superimpose the solution for the half-plane
(z > 0) on the solution for infinite plane, and because of symmetry in the half-plane
(z > 0) solution we will only consider y > 0. Hence, displacement components for the

half-plane can be written by using the following Fourier cosine and sine integrals:

ugh)(:c, y) = / Ul(h)(a:, a)cos(ay)da, (31a)
0

vgh)(:c, y) = / Vl(h)(ac, a)sin(ay)da, (31b)
0

where superscript (h) stands for the half-plane problem. Substituting (31) in (3) following

ordinary differential equations are obtained:

2r7(h) U(h) dv(h)
3 h
(k+ D)5 + (s = Dl — (s~ DU + 20—~ +7(3 - k)M =0,
(32a)
dU(h) N FRATAR) dV(h)
_9 S _ (h) _ 1 _ 1
a— yok — H)UY + (6 — 1) Ta? +7(k—1) I
—?(k+ 1)V =o. (32b)
Assuming a solution of the form exp(pz) we obtain the characteristic equation as,
(p* +yp — &® — iaby) (p* + vp — & +iaby) = 0, (33)
where §; is given by (22b). Roots of the characteristic equation are found to be
1 1 -
p=-57+ 5\/72 + 402 + 4diad, R(p1) >0, (34a)
1 1 -
p=—37+ 5\/72 + 402 — 4iaé), R(ps) > 0, (34b)

12




11

b= =577 §x/ 42 + 4a? + diady, R(ps) <0, (34¢)
1 1 :

pi= =37 5V +do? —diah,  R(m) <O. (34d)

The stresses and displacements for the half-plane problem are then expressed as follows:

whw‘AWme+&mmwmmwm (354)
oP(z,y) = Aﬂ&mem+&mmemmmm, (35b)

oo 4
ol (z,y) = Hi@; / > (s + 1)p; + Dja(3 — &)) Bjexp(pjz)cos(ay)da, (35¢)
“1)y 2

UZ(IZi = 1/ 3 — k)p; + Dja(k + 1)) B; exp(p;z)cos(ay)da, (354d)
=

o) (z,y) / Z ip; — @) Bjexp(p;z)sin(ay)da, (35¢)

o) oo )

By (h)(a: y) = /0 a(Bsexp(psz) + Bsexp(pax))sin(ay)da, (35%)

where B; (j = 3, 4) are unknown constants and D; is given by,

Pk +1) + 0?(1— k) + ypi(1 + &)
a(2p; +7(3 — k)

D;= - (36)

For z > 0 and y > 0, the total stress and displacement fields can be obtained by adding

the equations (25) and (35), that is

w(z,y) = u (2, y) + P (z,y), (37a)
v(z,y) = o (2, y) + P (e, v), (37b)
Oz (2,9) = 005} ® 37
zz1\T, Y -aml(x,y)—i—cm(z,y), ( c)

13




(r)

oo (2,9) = 00 (z,y) + ol (z,7), (37d)
oy (2,y) = 05 (2, 9) + oo (2, 1) (37¢)

The constants Bj(a), (j=3,4) are determined by using the free surface boundary

conditions as follows,

02x1(0,9) = 05 (0,9) + 011 (0,5) =0,  0<y<oo, (382)
001 (0,y) = 057 (0,9) + ol (0,9) =0,  0<y<oo. (38b)

Note that due to symmetry we only consider 0 < y < oo. Using (25c¢), (25¢), (35¢), and
(35€) and after simplifications using by MAPLE, (38) is reduced to following form:

-

((k + 1)p; + Dja(3 — K)) Bj(a) =

7=3
= L 1/df (t)dt/ooF (0, &)exp( — iwt)d (39)
- 2 2“0 o 1 e zrl\W, P ! w,
4
> (Djp;— a)Bj(a) = - —2— / fi(t)dt / Foy (w, @)exp( — iwt)dw (39b)
=3 T 20
where,
dio’w dwo(w — i)
Fre , (W, 0) = 222 ,
w,e) = D(w, a) Fop(w,@) D(w, ) (40a,b)
D(w,a) = wt — 2y + (2012 - )w — 2iayw + a* + a2723 —r (40c)

K+1

The inner integrals in (39) are evaluated in closed form using the theory of residues and
(39) is reduced to following form to determine the unknown constants B;(c), (j = 3,4):
4

> (& + 1)p; + Dje(3 = K)) B (@, t) = Rua1(s 1), (412)
=3

14




Z(D]pJ @)B;(a,t) = Reyi(a, 1), (41b)
=3 -

Bj(c) is now defined as

k+1 .
Byfo) = 5 / Bj(atexp( (1 — 0 )¢) fule)a, (422)
and,
Ren(a,t) = 1r-1 o { Agcos(Aat) + (YA — 2(A} + A3)sin(A t))}
(42b)
2 1 o

Bep(est) = = 20 +1 M0 +22) X

x {/\2 (X2 + 22 +42/4)cos(Aat) — M (A2 + A] — 72/4) sin()\gt)} (42¢)
where

Bt h Ny = | T @3a,b)
Ry =/ (12/4+ 02 + a2(3 - k)/( + 1), 43¢)
Ry =v*/4+ a2 (434d)

This completes the formulation for the opening mode problem. Stresses and

displacements are given by (37) and unknown constants are given by (29) and (41).

2.3 The sliding mode problem (f; = 0, f3 =

In this section, we will determine the displacements and stresses due to relative

displacement derivative of the crack faces in z-direction, namely f>(x). First we will

15




derive the expressions for stresses and displacements for a crack in infinite plane. Then,

the solution for the half-plane (z > 0) will be superimposed to satisfy the boundary

conditions at the free surface z = 0. Again, symmetry will be considered in the solution

of the half-plane (z > 0) problem. Following a similar procedure as given in Section 2.2,

stresses and displacements for the infinite plane can be written as follows,

y<0

)(x y) = ——/ ZEjexp(njy-l—iwx)dw,

/ ZE Ajexp(njy + iwz)dw,

i [L(x) 1
a(cxz)(x = &—__‘1-2;/ ZSmZJ Yexp(n;y + iwz)dw,

yy2 N,y 1 o / ZS;;%(w)exp(njy + iwz)dw,
35:212)(:1: ) / Z n; + iwA;)Ejexp(njy + iwz)dw,
271' 0%

0
55% z,Y) / ZE mexp(n;y + wz)dw,

00]_

S(i—) i(zw(f{, +1)+ A TLJ( H))Ej,

127
Jj=1

. 2
S = (iw(3 — k) + Ajny(k + 1)) Ej,
7=1

(442)

(44b)

(44c)

(44d)

(44e)

(441)

(44g)

(44h)

where subscript 2stands for the sliding mode or mode II problem and superscript (i)

stands for y < 0.

16




y>0

(z+) (z,y) = —/ E sexp(n;y + wz)dw, (45a)
00 'j=3
(fr) (z,v) ————/ ZE Ajexp(njy + wz)dw, (45b)
agg(a:, y) = 1 27r/ ng% w)exp(n;y + iwz)dw, (45c¢)
o) (z,y) = 1 o / nggzj(w Jexp(n;y + iwz)dw, (45d)
a( 5 (, :1:)— Z (n; + wA;)E exp(n;y + iwz)d
j ;) Esexp(n;y + iwz)dw, (45¢)
—a%uQ z,Y) —/ ZE n;exp(n;y + wz)dw, (459)
OO]_
4 4
Seey = Y (iw(s + 1) + Ajny(3 = ) B, (459)
7=3
-t 4
Sty = D_(1w(3 — k) + Amy(s + 1) E;, (45h)

S
1
w

where superscript (i*) stands for the half-plane (y > 0), n;, (j = 1,2,3,4) is given by
(23) and A; is given by (26). The unknown constants Ej, (j = 1,2,3,4) are determined

using the following boundary conditions:

og(JyQ)(x 0) = 03(122)($, O)a —x<r<oo, (46a)
o83 (z,0) =050 (x,0), —00< &< o0, (46b)

20 O 1 % —0<z<0,d<z <00
n+18x(u (:cO)—uz (mO)) fz() O0<zx<d (46c)

17




20 0 [ () A
sz(% (z,0) — v (:c,O))—O, ~oo <z <oo. (46d)

We first express the unknown constants £;(w), in the following form

K d
Biw) = 52w [ plte— it @7

Then, using (44), (45) and (46) following equations are obtained to determine Zj(w):

4 2
> (iw(3 - &) + Any(L+ K)) Zj(w) — > " (iw(3 — k) + Ajny(1 + &) Zi(w) =0,

=3 j=1
(48a)
4 2
> (n; + iwA;) Z;(w) - > (n + iwA;) Zj(w) = 0, (48b)
j=3 j=1
4 2
iw{ZAij(w) — ZAij(w)} =0, (48c)
j=3 j=1
iw{Z4(w) + Za(w) = Zo(w) — Z4 (w)} =1 (48d)

By using (44), (45), (47) and (48) stresses and displacement derivative for the sliding
mode problem can then be obtained. Note that if we solve (48) for Z ;(w) and substitute

the results in (47), (44d) and (45d) we find that,

o) (2,0) = 0l (z,0) =0, (49)

which is expected due to the symmetry about the z-axis. For the sliding mode problem
up(z, ) is an odd and vy(z, y) is an even function of y. In order to satisfy the free surface
boundary conditions ‘at z = 0, we will now superimpose the solution for the half-plane
(z > 0) on the solution for the infinite plane, and because of symmetry, in the half-plane
(z > 0) solution we will only consider y > 0. Hence, displacement components for the

half-plane can be written using Fourier sine and cosine integrals as follows:
18




u®(z,y) = / UM (z, o)sin(ay)da, (50a)
O -

o(e,9) = [ V(@ 0)cos(ay)dr (50b)
0

where superscript (k) stands for the half-plane problem. Substituting (50) in (3) following

ordinary differential equations are obtained

dQU(h) dU(h) N dV(h) L
(k+1) dac22 +9(k +1) di —o?(k — 1)U2( ) _2a di: —ya(3 — n)VQ( ) = 0,
(51a)
dU(h) d2v(h) dV(h)
20 djs + yo(k — 1)U2(h) +(k—1) dx22 +9(k—1) dza: —a?(k+ 1)1/'2(h) = 0.
(51b)
Assuming a solution of the form exp(¢z), the characteristic equation is obtained as
(2 + 9t — o —iab) (2 + 1t — o +iab;) =0, (52)

where §; is given by (22b). Roots of the characteristic equation are obtained as follows

= — -21-7 + %\/72 + 4a? + diad, R(t1) > 0, (532)
tg = — %'y - —;—\/72 + 4o — diady, R(ts) > 0, (53b)
t3 = — %’y - %W + 402 + diady, R(ts) <0, (53c¢)
tg = — %'7 — %\Fyz + 4a? — 4diad,, R(ts) < 0. (53d)

For the half-plane solution the stresses and displacements can now be expressed in the

following form

ugh)(a:,y) = /0 (Gsexp(tsz) + Gaexp(tsz))sin(ay)da, (54a)
19




vé (z,y) = / (G3Hsexp(tsz) + GaHexp(tsz))doa, (54b)

a:(c};)Q = 1/ Z((n + 1)t; — aH;(3 — k))Gjexp(t;z)sin(ay)da, (54¢)
j=3
ag;% = 1/ > — k)t; — aH;(k + 1))Gjexp(t;x)sin(ay)de, (54d)
o
ag;)z (z,v) / Z a + H;t;)G exp(tjz)cos(oy)da, (54e)
5y (h)(a: y) = / a(Gsexp(tsx) + Gaexp(tsx))cos(ay)da, (54f)
0

where G, (j = 3, 4) are unknown constants and H; is given by,

vti(k +1) +o?(1— k) +t3(k +1)
a(2t; +v(3 —k))

Hj(a) = ’ (.7 = 3’4) (55)

For z > 0 and y > 0, the total stress and displacement fields can now be obtained by

adding (45) and (54) as
up(z,y) = () (2) 56
2\, Y —'U,2 (x:y)+u2 (x7y)v ( a)
va(z,y) = o () 56b
2\ T, Y ——’U2 ("L' y)+’1)2 (xay), ( )
O22(2,Y) = TLns " 56
zz2\ T, Y) = oa:zZ (IB, y) + O-:czQ(I’ y)> ( C)
_ (") (h) 56d
Uzy2 (za y) - UzyZ ($7 y) + Uzy2 (m$ y)’ ( )
Oya(2,y) = 059 (@, 9) + o (2, 9)- (56¢)

The constants G;(a), (j = 3,4) are determined by using the free surface boundary

conditions as follows:
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0222(0,y) = 0053 (0,) + 05(0,9) =0, 0 <y < oo, (57a)

022(0,9) = 009 (0,9) +0h(0,y) =0,  0<y<oo. (57b)

zy2 Y2

Note that due to symmetry we only consider 0 < y < co. Using (45c), (45¢), (54c) and
(54¢) and after simplifications by using MAPLE, (57) is reduced to following form:

4

> ((k+1)t; — Hja(3 - k))Gj(a) =

7=3
1 k-1 .
=~ m / fa(t)dt / Fpzo(w, o)exp( — twt)dw, (582)

4
Z(Hjt]‘ +a)Gj(a) = — ————/ fo(t dt/ Frpo(w, a)exp( = iwt)dw, (58b)
=3 U 2#0
where,

4o 402 (iw +7)

Fmg(w, a) = __Z—)-(—w,_af_)’ nyg(w, 0{) = ———D—((;,—a—)'—, (59a,b)

and D(w, ) is given by (40c). The inner integrals in (58) are evaluated in closed form by
using the theory of residues and (58) is reduced to following form to determine the

unknown constants G;(c), (j = 3,4):

Z;(m 1t; ~ Hya(3 - 5))G(01) = Rasala ), (602)
is(Hjsj +a)G(e,t) = Rapalot). (60b)
<

where

Gy(a) = ’*2::01 / &s(etjexp((3 - )t) falt)at (612)
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2Kk—1 ol
=_= i 6
R.z2(a,t) P S W WOV Y) {Azcos(Agt) + Alsm()\zt)},f (61b)
1 1 a?
Raplast) = = e 200 <
X {fy)\gcos()\gt) + (2 (/\% +23) + 'yAl)sin()\gt)}. (61c)

In (61) \; and )\, are given by (43). This completes the formulation for the sliding mode
problem. Stresses and displacements are given by (56) and unknown constants are given

by (48) and (60).

3. Derivation of the singular integral equations

The stress and displacement fields for the contact, opening mode and sliding mode
crack problems are given in Section 2 in terms of the unknown functions f1(t), fo(t) and

f3(t). The total stress and displacement fields can now be expressed as follows,

u(z,y) = wi(z,y) + ue(z,y) + us(z,v), 0<zr<oo, O0<y<oo, (62a)
v(z,y) = vi(z,y) + vo(z,y) + v3(z,¥), O<z<oo, 0<y<oo, (62b)
02z (2, 1Y) = O221(Z,Y) + 02z (T, Y) + Oze3(T,y), 0<z<00, 0<y<oo, (62¢)
Oy (2, Y) = 001 (2, Y) + 0222, Y) + Ozy3(2,9), 0<z <00, 0<y<oo, (62d)

Uyy(x’ y) = Uyyl(x’ y) + O'yy2($a y) + 0yy3(x, y) + E(x)ﬁo,

0<zr<oo, 0<y<oo, (62¢)

where expressions due to fi, f, and f3 are given by (37), (56) and (16) respectively. In
this section, the problem will be reduced to three singular integral equations using the

boundary conditions (5b) and (6), i.e., by using,
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oy(z,0) =0, 0<z<d, (63a)

0zy(,0) =0, 0<z<d, (63b)
4/.60 )

9 _ , 63
K+1mﬂ®w) fly), a<y<b (63c)

Considering the expressions given in Section 2, stresses and displacement derivative can

be written in the following general form,

b
Oyy(Z,Y) / Zklf z,y,t) fi(t )dt—!—/ ki3(z,y,t) f3(t)dt + E(z)eo, (64a)
d_2 b
Uzy(m’y) =/ ZkZJ(xay’t)f](t)dt+/ k23($,y,t)f3(t)dt, (64b)
0 =1 a
4 b
o 9= [ sty 5w 00t + [ v flt)dt (640)

J—

Then, using (63) integral equations can be expressed as follows:

oy(z,0) / Zklj z,0,t) f;(t dt+/ ki3(z,0,t) f3(t)dt + E(x)eo = 0,
0

j=1
0<z<d, (652)

d 2 b
00y(2,0) = / S as(z,0,8)(t)dt + / s (0, ) fo(£)dt = 0,
0 j=1 a
0<z<d, (65b)

4;10 0

1+56—y_ /Zk3](0,y, )it )dt+/ ks3(0,9,t) f3(t)dt = f(y),

a<y<hb. (65¢)
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In the previous section it was shown that because of symmetry Oyy2(z,0) =0, for

fl(t) = 0’ fQ(t) # 07 f3(t) =0 and Uzyl(xao) =0 for fl(t) 75 0’ fZ—(t) = 0= f3(t) = 05
from which it follows that

klz(x, O,t) = 0, k21 (a:, 0, t) =0. (66a,b)

The expressions for the other kernels kij(z,y,t) (kij(z,0,t) fori = 1,2, and kij(0,9,t)
for 1 = 3) will be given in the following sections. The kernels will be expressed in the

following general form,

‘roo

kij(xa 0>t) = / Kij(x’ t> p)dp, (7' = 17 27 .7 = 1a 2a 3)’ (67&)
0

kij(oa Y, t) = / Kij(y?ta p)dp, ('L = 37 .7 = ]-a 2>3) (67b)
0

With the exception of one case (that being ks3(0,y,t) for v < 0) the integrands in (67)
are bounded and continuous for p < oo and integrable at p = 0. The singular nature of
the kernels k;; is therefore determined by examining the asymptotic behavior of the
integrands as p tends to infinity. In the following sections we will give the expressions

and details of the asymptotic analyses for the kernels.
31 kll (m7 Y, t)

We first express k11(z, y, t) as follows

kn(z,v,t) = k9 (z,u,1) + kW (2,9, ), (68)

k)

where kﬁ is obtained from the infinite plane solution and k§1 is obtained from the half-

plane (z > 0) solution. Referring to (25d), kﬁ)(x, y, t) can be written as
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kﬁ)(a:, y,t) = r :‘__ ! exp * / qS w, y)exp(iw(z — t))dw, (692)

4
30 (w,y) =Y (iw(3 = k) + An(1+ &) P(w)exp(nyy), (69b)
7=3

wheren;, (j=1,2,3,4), A; and P; are given by (23), (26) and (29), respectively.

Changing the limits of integration (692) can be written as,

k + 1 exp(yz)

kﬁ)(% y,t) = /o { Kl(?l (w, y)cos(w(z —t)) +

k—1 4dx
+ K (@, plsinw(z — 1)) bdw, (70)
where,
K (w,9) = ¢ (w,9) + 61 (- w, ), (71a)
K(w,9) = (68 (w,9) - 68(- w,y))- (71b)

In order to extract the singular terms we expand K. 1(?1 and K 1(11)2 into series as w — ©0.

Following asymptotic expansions are obtained by using MAPLE:

KO = {2+ 2w B o 5 ) Jesal -, (722)
Kl(?zoo(% y) = {fzo + IEZ +- + f212 +O< = )}exp( — wy), (72b)

where the leading terms are

4(k — 1)
k41

2(k — 1)y

fo= - K+1

; fu= (73a,b)

Subtracting the asymptotic expansions from the integrands in (70), using integration
cutoff points for the infinite integrals, evaluating some of the integrals in closed form and
taking the limit as y — 0, after some manipulations k§ 1) (z,y,1t) is reduced to
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i 1 1 k+1
kif(x,o,t>=:exp<vx>{-—

1
P 14_[ T (,1) + T (2, 1) -

- fnln(Aﬁ’ln - xl)] } (74)

where Aiil)l is an integration cutoff point and,
A0
Q s

- / i K (w,0) - K (w, O)]cos(w(x —1))dw

111

+ /AC: [Kl(j)loo(W, 0) — fll/w] cos(w(z — t))dw

111
A cos(a) — 1
- fll{’Yo +/ —‘(—a‘)—'—da}, (752)
0

40

Ity = [ [Kiher0) - fo]sinfetz — )

L

+ / : [Kl(’l);o (w,0) — fgo] sin(w(z — t))dw, (75b)

112

(K (,0) — K5, 0)sin(w(z — £))dw

@)
112

where A% is another integration cutoff point, 4, is the Euler number, [10]. Second
integrals in (75a) and (75b) will be neglected in numerical computation for sufficiently
large values of integration cutoff points. Third integrals in (75a) and (75b) are evaluated
in closed form. The expressions used in the evaluation of these integrals are given in

Appendix A. Referring to (35d) and (42a), k (x, y, t) can be written as follows

n+1exp

h
k£1)($,y7t) _ 1

/ Kl(’f)(a t, z)cos(ay)da (76)
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where

Kﬁl (a,t, ) ZQSW a)B;(a, t)exp(pz + (7/2 — A1)t), (772)

ny( a) = pj(3 — k) + Djo(1+ k), (1=3,4). (77b)

pj, (1=1,2,3,4), Dj(er) and B;(a,t) are given by (34), (36) and (41) respectively. In
order to extract the singular terms we expand K11 (a,t,z) into series as a tends to

infinity as follows:

- . hy  h hr 1
K@(mu@={@ﬁ+ma+m+—+—3+ +ﬁ+o(7>}x

x exp(y(t — z)/2 — (t + z)a), (78)

where the coefficients of the expansion are also functions of z and ¢. The leading term is

given by,

L_16k—1 51n(51x/2)sm(61t/2)
27 rk+1 62

(79)

|I

61 is given by (22b). Subtracting K. f}f)oo from the integrand in (76), evaluating some of
the integrals in closed form, using an integration cutoff point AY;) for the infinite integral

and taking the limit as y — 0, after some manipulations kY{) can be written as

k(h)( 0,t) = K + 1 exp(yz) {Tll)( t) + J(h)( t) —

k-1 2
— hexp(s(t — 2)/2)Ei( - APt +2)) } (80)

where Ei() is the exponential integral [10] and,

2R3 ht
(t+z) (t+z)

e = { 2 Yot - a)/2), G19)
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®
Jff)(x,t)=/ K" (a,t,z)da
0

0
+/A“‘) [Kf’f)(a, t,x) — Kf’f)w(a,t, x)] do
11

+ / (h)rf{”f"’(a, t, z)de, (81b)

11

Kl(gl)*(a,t, z)= K{’f)(a, t,x) — (h§a2 +hio+ ho)exp('y(t —1)/2 - (t+ 7)),
(82a)

hy  hs

etz = { B+ 2 ok S enplae - /2= 1+ 2)a). (32b)

Second integral in (81b) will be neglected in numerical computation for a sufficiently
large value of Ag};). Third integral in (81b) is evaluated in closed form. The expression
used in the evaluation of this integral is given in Appendix A. kﬁ)(:c, 0,t) and kg‘) (z,0,t)
are given by equations (74) and (80) respectively. Adding these two equations k1 (z, 0, 1)

may be expressed as,

ka(2,0,¢) = exp('yx){%% + huss(2, £) + haij (=, t)}, (83)
where,
hiis(z,t) = 2—(%_*;—11)7”?{)(:@@, (84a)
hug(z,t) = :J_” 111;{ — fuln(Ajt - 2l) + I (2, 1) + Jﬁg(m,t)} +

2(17:__11) {Jl(f)(x, t) — hyexp(y(t — x)/2)E1< - Ag’{)(t + x)) }, (84b)
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The terms in (84) are given explicitly by (75) and (81). Note that the first term in (83) is
the Cauchy singularity associated with a crack in infinite plane, as for the second term we

can write,

1 1 2t 4¢2
lim hns(ﬂ’) t) ( + - 3) . (85)

(@.t)— t+z  (t+z)° (t+2)

This term becomes singular as z and ¢ simultaneously approach zero, and is the standard
expression found for edge cracks in homogeneous materials. (see for example, equation
(23a) in Dag and Erdogan [8]).

3.2 k13(m’ Y, t)

Referring to (16b), k13(z, y, t) can be written as

ks, 1) = ZRIE L [ g, a)exlinty - D) (362
2
d13(p,2) = D_(ipNj(k +1) + 55(3 — ))¥;(p)exp(s;z), (86b)

=1

where s; (j=1,2,3,4), N; and 1;(p) are given by (13), (15) and (19), respectively.
Changing the limits of integration in (86a) and taking the limit as y — 0, and rearranging,

k13(z, 0,t) can be written as

bia2,0,0) = S L 7L K5, )c0s(ot) = Kilo, a)sinion) o, @7
where,

Kizi(p,z) = ¢13(p, ) + ¢13( — p, 2), (882)
Kiza(p, z) = i(d13(p, ) — d13( — p, 7)) (88b)
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In order to extract the singular terms we expand K31 (p, z) and Kis3(p, =) into series as

p — oo. Following asymptotic expansions are obtained by using MAPLE,

d d d
K5 = {24 B e B hon(~ (2 o), @9
o o dy1 | da2 da1a
Ki5(p,z) = { dg1p + dao + > + ot ow exp( ~ (7/2 + p)z), (89a)

where the coefficients are functions of z. The leading terms are given by,

4(k — 1)sin(b3z/2)
03 ’

dn(k — 1)sin(b3z/2)
63 ’

and 83 by (12b). Subtracting the asymptotic expansions from the integrands in (87), using
integration cutoff points for the infinite integrals and evaluating some of the integrals in

closed form, after some manipulations (87) is reduced to,

kis(z,0,t) = exp(')/x){hws(m, £) + hiss(z, t)}, 1)
hrsa(a,1) = gy 7 { (e 8) + ), (922)
hass (e, t) = Q—G%T)%{Jm (2,8) + (@, ) +

;- duexp( = 12/2) [P, (= = it)Assr) + (0, (= + it)Ass1)|

+ doyrexp( — yz/2)arctan( — t/x)}, (92b)

where A;3; is an integration cutoff point and I'(, ) is the incomplete gamma function, [10]

and

2 -t z
T131 (a:,t) = {mdu =+ mdlo}exp( - ’756/2), (93&)
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ris(z,t) = { — 2l d3 ! dzo}CXp( - 7z/2), , (93b)

(@+2)7 O 2+t

Azt
Jia1(z, 1) = K31 (p, x)cos(pt)dp
0

+ /A (K1 (o, 7) — K34 (0, 2))cos(pt)dp
131

o0

+ 4 F{’g’l(p,x)cos(pt)dp, (93C)
131

A132
Jiz2(p, ) = — A K13y (p; x)sin(pt)dp

- / " (Ko, 2) — K5 (p,))sin(pt)dp

A
o0

- [ ris(e.apsinton)ap, (934)
Az

where A;3, is another integration cutoff point and the remaining terms are given by,

Kiz1(p, 7) = Kia1(p, ) — (df;p + dio)exp( — (v/2 + p)x), (94a)
r%(p,0) = {%—2-+%+---+%§§}exp(—(v/2+p)x), (94b)
Ki3(p,yx) = Kisa(p, ) — (d31p + dao + daa/p)exp( — (v/2 + p)x), (94c)
I () = {%+%+~--+%§}exp<—<v/z+p>x>. (94d)

Second integrals in (93c) and (93d) will be neglected in numerical computation for
sufficiently large values of A;3; and Aj3,. Third integrals in (93c) and (93d) are evaluated
in closed form. The expressions used in the evaluation of these integrals are given in

Appendix A. Also note that,
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1[ 2at? 2t
lim  hizs(z,t) = = - : #3
(z,£)—0 13 ( ) 7T'{ (372 + t2)2 77($2 + t2)2} ) ( )

This term becomes singular as z and ¢ simultaneously approach zero, and is the standard
expression obtained for the homogeneous materials (see, for example, equation (23b) in

Dag and Erdogan [8]).
33 k22 (x7 Yy, t)

We first express k2 (z, y, t) as follows

kn(z, v, 1) = k9 (z,9,) + K (2, , 1), (96)

where k() is obtained from the infinite plane solution and k3, is obtained from the half-

plane (z > 0) solution. Referring to (45¢) kg’z)(a:, y, t) can be written as

KD (z,y,t) = (5 + 1)@4—(7}"’—) /_ ” ¢ (w, y)exp(iw(z — t))dw, (972)
. 4
D(w,y) = Y _(n; + iwA;) Z;(w)exp(ny), (97b)
=3

wheren;, (j=1,2,3,4), A; and Z; are given by (23), (26) and (48), respectively.

Changing the limits of integration (97a) can be written as,

kS (z,y,t) = (5 + 1)3‘;(—7“”—) /0 oo{ K (w, y)cos(w(z — 1)) +

T
+ K (w, y)sin(w(z — 1)) fdo, ©8)
where,
K (w,9) = 68 (w,9) + d5 (— 1), (992)
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Ky (w,y) = i(abé? (w,y) = ¢5(—w, y))- (99b)

In order to extract the singular terms we expand Kz(?l and Kz(zz)2 into series as w — 00.

Following asymptotic expansions are obtained by using MAPLE

i)oo kl k kl 1

K3®(w,y) = {Ti—+51§+"'+511%+O(W)}CXP(—W)’ (100a)
1)00 k22 kz 1

K (w,y) = {kzo t et w_1122 +0| =7 | poxp( —wy), (100b)

where the leading terms are

4 2
kyy = —1

—_— . 101a,b
k+1’ k+1 (1012,5)

ko = —

Subtracting the asymptotic expansions from the integrands in (98), using integration
cutoff points for the infinite integrals, evaluating some integrals in closed form and taking

the limit as y — 0, and after some manipulations kg;) (z,vy,t) is reduced to,

; 1 1 1.6 i
k5 (2,0,1) = eXPW){% (e + Do [ I @) + I 1)

— k(D¢ - ]| } (102)

where,

| A4

Ti(et) = | Kiai(w, O)cos(u(z — t))dw

+ [ (K80 - K, 0)|cos(ota ~ H)d

221

+ [ R @,0) - b fufoos(ule - D)d

221

A cos(a) — 1
— ko + T Cdad, (1032)
0

o
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, Apr
Tt = [ (K800 = o sinf(e - D)
0

+ /A(") [K%)z(w, 0) — Kég);o(w, O)]sin(w(x —t))dw

222

+ / C: [K§§2°°(w, 0) — kzo] sin(w(z — t))dw, (103b)

222

Agz)l and AéiQ)Q are integration cutoff points and o is the Euler number, [10]. Second
integrals in (103a) and (103b) will be neglected in numerical computation for sufficiently
large values of integration cutoff points. Third integrals in (103a) and (103b) are
evaluated in closed form. The expressions used in the evaluation of these integrals are

given in Appendix A. Referring to (54e) and (61a), kég) (z,y,t) can be written as follows

kég)(x,y, t)=(x+ l)i:}—p—f(zﬂ/ Ké;)(a,t,x)cos(ay)da, (104)
0
where
b 4
ES(at,2) = (a+ Hit))Gj (o, hexp(tiz + (7/2 = A)t), (1052)
=3

t;, (1=1,2,3,4), Hj(a) and G}(, t) are given by (53), (55) and (60), respectively. In
order to extract the singular terms we expand Kég)(a,t,x) into series as o tends to

infinity as follows:
(h)oo _ * 2 * my My my 1
K22 (a7tax)— {mza +m1a+m0+_&‘+?‘l_2+"‘+—a7+0(a§>}x

x exp(y(t — z)/2 — (t + z)a), (106)

where the coefficients of the expansion are also functions of « and t. The leading term is

given by,
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. 16 1 sin(6z/2)sin(8:t/2)

= — 107
m TK+1 6% (107)

and &, is given by (22b). Subtracting K 2(’21)°° from the integrand in (104), evaluating some

of the integrals in closed form, using an integration cutoff point Agg) for the infinite

integral and taking the limit as y — 0, after some manipulations kég) can be written as,

9,0 = (e D22 a0+ 1) -

et -2)/DE( - AP +D) ) 09

where Ei() is the exponential integral [10] and,

(r) _ 2m; m; ™Mo
Too (Z,1) = {(t n a:)3 + T +;)2 -+ ; +x}exp('y(t—- z)/2), (109a)

@
Jz(g)(x,t)z/ Kég)*(a,t,x)da
0

+/ [Kg)(a,t,x) - Kég)w(a,t,:c)]da
A

+ /A (h)r2(§‘>°°(a,t, z)da, (109b)

(1102)

(R)oo _Jm2 Mg mr
Iy (a,t,x) = {Zz— tog ot ?}exp('y(t —-z)/2— (t+2)a). (110b)

Second integral in (109b) will be neglected in numerical computation for a sufficiently
large value of Ag;). Third integral in (109b) is evaluated in closed form. The expression
used in the evaluation of this integral is given in Appendix A. kézz) (z,0,t) and kég) (z,0,1)
are given by equations (102) and (108) respectively. Adding these two equations

koo (z,0,t) is expressed in the following form,
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1 1
koo (x,0,1) = eXp(’Y?«‘){;‘t—_; + hoas(z, 1) + h22f(x,t)}, (111)

where,

kK+1

hoss(2, 1) = ~———1ip) (3, 1), (1122)
1 i % )
hoot(z, 1) = (K + 1)2%{ - kum(Agglu - :cl) + I (z,1) + I (x, t)} +

+

+1 :
r . {Jg)(x, t) — mexp(y(t — z) /2)E1< — AP+ x)) } (112b)
The terms in (112) are given explicitly by (103) and (109). Note that the first term in
(111) is the Cauchy singularity associated with a crack in infinite plane, as for the second
term, we can write,

1({ 1 2t 42
lim  ho(x,t) = — + - . 113
(@) = o <t +z 0 (t+z)?  (t+ x)3> (113)

This term becomes singular as z and ¢ simultaneously approach zero, and is the standard
expression found for edge cracks in homogeneous materials. (see for example, equation
(23a) in Dag and Erdogan [8]). Also, note that if the medium is homogeneous (i.e.,
v =0), hay; =0 in (111) and hi1y =0 in (83) and kii(z,0,¢) = koo(z,0,t), but if
4 #0, this equality is not valid and consequently for graded materials

ku(x, 0, t) # kzg(x, 0, t).

34 k23 (IB, Yy, t)

Referring to (16¢), ko3(z, ¥, t) can be written as,

exp

kzg(l‘, Y, t) = ——z(ﬂ_ﬁ)_/_ ¢23(pa x)exp(zp(y - t))dp’ (1143)
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2
¢23(p, ) = Y _(ip + N;s;)v5(p)exp(s;z), (114b)
7=1 i

where s;, (j = 1,2,3,4), N; and 1;(p) are given by (13), (15) and (19), respectively.
Changing the limits of integration in (114a) and taking the limit as y — 0, and

rearranging, kos3(z, 0, t) can be written as

kys(x,0,) = E)%—(?—) /0 Oo{ Kas1(p, z)cos(pt) — Kzsz(p,x)sin(pt)}dp, (115)
where,

Koz1(p, z) = ¢23(p, ) + 23( — p, T), (116a)
Kon(p, ) = i(d23(p, T) — $2s( — p, ). (116b)

In order to extract the singular terms we expand Kos3;(p, =) and Koso(p, z) into series as

p — oo. Following asymptotic expansions are obtained by using MAPLE,

Ks5i(pyz) = {311P +ex + -e;—l + EPE 4ot pm }eXP( — (7/2+ p)z), (117a)
00 €22 €212
Ky(p,z) = {emp T e A }exp< (/2 +p)z),  (17b)

where the coefficients are functions of z. The leading terms are given by,

. dnsin(bzx/2 . 4sin(b3x/2
611 = - ____T) 55'3‘3'—"_/ ), 621 = - __—‘(62 / ), (118a,b)

and &3 by (12b). Subtracting the asymptotic expansions from the integrands in (115),
using integration cutoff points for the infinite integrals and evaluating some of the

integrals in closed form, after some manipulations (115) is reduced to,

kos(z,0,1) = CXP(’YII?){h23s($, t) + hoss(z, t)}» (119)
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hoss(z,t) = 21 {7‘231(90, t) +7”232($,t)}, (1202)

o
1
hoss(z,t) = %{Jm(x,t) + Joza(z,t) +

ejrexp( — vx/2
+11 P(27/)

[F(O, (IE - it)A231) + I(0, (113 + it)Azgl)]
+ eg1exp( — vz /2)arctan( — t/x)}, (120b)

where A3 is an integration cutoff point, I'(, ) is the incomplete gamma function, [10],

_f 2= T
ros1(z,1) = meu + o pen exp( — vz/2), (121a)
-2tz t
rosa(T,t) = {mem - mezo}exp( —z/2), (121b)
Az
Josi(z,t) = K331 (p, z)cos(pt)dp
0

+ [ (an(o.2) - Ko, 2))cos(ot)dp
231

+ / I35, (py z)cos(pt)dp, (121¢)
A

Azz .
Jasa(p,z) = — i K33 (p, x)sin(pt)dp

- / " (Kanl(p,z) — Ky(p, 2))sin(pt)dp

Aazz
- / F20§)2(p’x)8in(pt)dp7 (121d)
Az

and Ajs; is another integration cutoff point. The remaining terms are given by

K51 (p, z) = Koz (p, z) — (ef1p + er0)exp( — (v/2 + p)z), (122a)
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€ e
g (p,z) = {f + et %}exp( — (/2 + p)), (122b)

03
K33(p,z) = Koga(p, ) — (€50 + €20 + ea1/p)exp( — (v/2 + p)x), (122¢)
(0, z) = {pi = L fﬁ}exm — (1/2+ p)a). (1239)

Second integrals in (121c) and (121d) will be neglected in numerical computation for
sufficiently large values of A3 and Ajsy. Third integrals in (121c) and (121d) are
evaluated in closed form. The expressions used in the evaluation of these integrals are
given in Appendix A. Also note that

1 2xt? 2tz? }
()0 wol®0) = {n(:ﬁ +12)° (22 +12)° (124)

This term becomes singular as z and ¢ simultaneously approach zero, and is the standard
expression obtained for the homogeneous materials (see, for example, equation (23¢) in

Dag and Erdogan [8]).
3.5 k31 (x, vy, t)

We first express k31 (z,y,t) as follows:
kau(z,,1) = k) (2, 3,1) + K57 (2,0, ), (125)

where k() and k{") are obtained from the infinite plane and half-plane (z > 0) solutions

respectively. Referring to (25f), kéil) (z,y,t) can be expressed as,

z,y,t / ¢31 w, y)exp(iw(z — t))dw, (126a)

. 4
Dw,y) =Y Pi(w)njexp(nzy), (126b)

=3
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nj, (j=1,2,3,4), P; are given by (23) and (29), respectively. Changing the limits of

integration, (126a) can be written as

kéil)(:c, y,t) = —71}—/000{ K?Ei)l (w,y)cos(w(z — t)) + Ké%(w, y)sin(w(z — t))}dw (127)

where
K (0,9) = 65 (w,9) + 65— w, p), (128a)
K& (w,y) = i(dﬁéﬁ)(w, y) = 65 (—w, y)). (128b)

In order to extract the singular terms we expand K?E?l and K. é% into series as w — 00.

Following asymptotic expansions are obtained by using MAPLE

i)oo * gu gi12 g112

K?El)l (w7 y) = {gllw + g10 + ‘(:;‘ + _60—2_ +---+ Z}—l—z-}exp( - wy), (1293.)
i * g2 g22 9212

K?El)zoo(% y) = {Qzlw + g0 + 71 t ot +t70 }exp( - wy), (129b)

where the leading terms are given in Appendix B. Note that the coefficients of the
expansion are functions of y. Subtracting the asymptotic expansions from the integrands
in (127), using integration cutoff points for the infinite integrals, evaluating some of the
integrals in closed form and taking the limit as z — 0, after some manipulations

kgl) (z,y,t) is reduced to
i 1{ 6 i i
K0.01) = {00 + 900+ It
gu . i . i
+5 [1“ (0, (y— Zt)A:(Bl)l) + 1“(0, (y + zt)Aéfl)]

+ goarctan( — t/y)}, (130)
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where A§i1)1 is an integration cutoff point, I'(, ) is the incomplete gamma function [10],

vt y 2ty t
(y2 +t2)2g11 + y2 +t2910 - (y2 +t2)2921 - y2 +t2g20’

r(y,) =

80 = [ K sy

* / o {K?E?l(“” y) - K31 () y)}cos(wt)dw
A 1

311

+ [ rew yeos(ut)ds,

311

J3(1)2(y, = / K312 (w, y)sin(wt)dw

- / ,. {Ka(,??(w, y) — K35 (w, y)}sin(wt)dw

A4S

m .
— / . Fégoo(w, y)sin(wt)dw,

312

Agil)z is another integration cutoff point and the remaining terms are given by

K (w,y) = K$ (w,9) — (ghw + guo)exp( — wy),

Féi)loo(w, y) = {g{% + QE 4+ -+ gl-lz}f:xp( wy),

K (w,y) = K9 (w,9) = (9310 + ga0 + g1 /w)exp( — wy),

i 922 . G23 g212
FZ’%OO(W,?J)”—" {;5'-1————}- +—}exp(——wy),

(131a)

(131b)

(131c)

(132a)

(132b)

(1320)

(132d)

Second integrals in (131b) and (131c) will be neglected in numerical computation for

sufficiently large values of Agl)l and Agl)Q.Third integrals in (131b) and (131c) are
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evaluated in closed form. The expressions used in the evaluation of these integrals are

given in Appendix A. Referring to (35f) and (41a), ké’{) (z,y,t) can be written as follows:

kgf)(a:, y,t) = 2/ K?E?)(a,t, z)sin(ay)da, (133)
0
where
5 4
KM (a,t,z) = — ) Bj(a, hexp(pz + (1/2 = M)t), (134)
=3

pj, (j=1,2,3,4) and Bj(a,t) are given by (34) and (41), respectively. In order to
extract the singular terms we expand K. é’f)(a, t,0) into a series as « tends to infinity as

follows:

KM (0, t,0) = {z"{a Fig+ D+ T4 i—ﬂ-}eXp((vﬂ - a)t) (135)

where the coefficients of the expansion are functions of t. The leading term is given by

_— 2 nsin(élt/Q)
- (k+1)6; ’ (136)

6, by (22b). Subtracting K:E;L)(’o from the integrand in (133), evaluating some of the

integrals in closed form, using an integration cutoff point for the infinite integral and

taking the limit as z — 0, after some manipulations kg{) can be written as

ED(0,3,1) = 2{r(v, 1) + irexp(t/2)arctan(y/t) + 4P (v, 1)}, (137)
(h) _ 2yt y .
Ty (y,t) = { TR i+ i 20}exp('yt/2), (138a)
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J:gl)(?l,t)= A Kg(,il)*(a,t)sin(ay)da

+/@JK$“%%0%—K%“unumkm&wma
A

31

+ / P (a, t)sin(ay)da. (138b)
Al

31

In (138) Ag{) is an integration cutoff point and the remaining terms are given by
K" (0,t) = K (0,1,0) - (i + i + ir/@)exp((7/2 — @)t), (1392)

ri=(a,t) = {— e —}exp((’y/2 — a)t). (139b)

Note that second integral in (138b) will be neglected in numerical computation for a
sufficiently large value of Ag{) and third integral is evaluated in closed form. The
expression used in the evaluation of this integral is given in Appendix A. k:(fl)(O, y,t) and
k:(ff)(O,y, t) are given by equations (130) and (137), respectively. Adding these two

equations, k31 (0, y,t) is expressed in the following form,

k31 (O> Y, t) - h3ls(y> t) + h31f(y7 t)’ (140)
where,

1
hars(y,1) =~ (3,1) + 277 (4,1), (1412)

1 i 7
howr(,0) = £ { I8 0) + Iiton ) +
+ %—1 [F (0, (y— it)Ag?l) + P(o, (y+ z‘t)Ag?l)] + gorarctan( — t/y)}
{J (y,t) + zlexp('yt/2)arctan(y/t)} (141b)
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The terms in (141) are given explicitly by (131) and (138). Also, note that,

4ty
lim A )= — ————. 142
b0 315(Y, ) 7 (g2 +t2)2 (142)

This term becomes singular as y and ¢ simultaneously tend to zero, and is the standard
expression found for homogeneous materials. (see, for example, equation (23d) in Dag

and Erdogan [8]).
3.6 k32 (wv Yy, t)

We first express ks»(z, y,t) as follows,

kaa(z, 3, t) = kS (2,1, ) + kS5 (2, 9, T), (143)

where kg;) and kgg) are obtained from the infinite plane and half-plane (z > 0) solutions

respectively. Referring to (45f) kgg(x y,t) can be expressed as

i 1 [* 7 .
w0 =1 [ s mexlite - 1)de (1442
)(w,y) = ZZ ynjexp(n;y), (144b)
7=3

where n;, (j = 1,2, 3,4) is given by (23) and Z; is given by (48). Changing the limits of

integration (144a) can be written as
Wt == [ { kY — 1)) + K ] —1)) bd 145
3 (7,9, 1) 7/, 351 (W, y)cos(w(z — 1)) + Ksgpo(w, y)sin(w(z — 1)) pdw,  (145)

where

KD (w,9) = 68w, y) + 65— w,), (1462)
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Ky (w,9) = i(¢§(w,y) - ¢ (— w,v)). _ (146b)

In order to extract the singular terms we expand K 391 and K 350 INtO series as w — oo.

Following asymptotic expansions are obtained by using MAPLE:

K§2)1 (w,y) = {lnw + 1o+ —1—1 + -1-2- o 22 }exp( —wy), (1472)
i loy 1 l
KJ®(w,y) = {lzlw +lo+ = + -23 ot 22 }exp( ~ wy), (147b)

where the leading terms are given in Appendix B. Note that the coefficients of the
expansion are functions of y. Subtracting the asymptotic expansions from the integrands
in (145), using integration cutoff points for the infinite integrals, evaluating some
integrals in closed form and taking the limit as z — 0, after some manipulations

kézz)(x, y, t) is reduced to:

k;%)(o, Y, t) T32 (y’ ) + J?g)l(ya ) + J?g)2( )
7T

+ %l [1“ (o, (y— z-t)Aggl) + F(O (y+ zt)Aéz)l)]

+ Iy arctan( — t/y)}, (148)

where A:(fz)l is an integration cutoff point, I'(, ) is the incomplete gamma function,

Y ] 2ty I t ]
P et 2

. 2 _
i (y,t) = j (149a)
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A
T (y,t) = 0 K (w, y)cos(wt)dw

o . .
* /Am {Ki’(’g)l(“” y) - K9 (w, y)}ws(wt)dw

321

+/ Fé;)l (w, y)cos(wt)dw,

321

(8 A;(;gz (3)* .
J3o0(ys 1) = — A K350 (w, y)sin(wt)dw

322

m -
= | TS5, y)sin(wt)dw,

322

A322 is another integration cutoff point and the remaining terms are given by
K (w,y) = K (w,y) = (Hyw + ho)exp( — w),

(3)o0 e | Ls l112
Lyp(w,y) = ¢ 5 + 5+ + o pexp( —wy),

K (@,9) = Kh(w,) = (5w + lao + I /w)exp( — wy),

l l l
322 > (w, )—{ = +’?E +t 23}3@( wy),

(149b)

(149¢)

(1502)

(150b)

(150c)

(150d)

Second integrals in (149b) and (149¢c) will be neglected in numerical computation for

sufficiently large values of A321 and A322 Third integrals in (149b) and (149c) are

evaluated in closed form. The expressions used in the evaluation of these integrals are

given in Appendix A. Referring to (54f) and (61a), k:(,)g) (z,y,t) can be written as follows:

K (eut) =2 [ K (ot ocos(an)de,

46
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where

4
E®(a,t,2) = o _Gj(a texp(pjz + (/2 = M)t), (152)
=3

ti, (= 1,2,3,4) is given by (53) and G}(a,) is given by (60). In order to extract the

singular terms we expand K. §§) (a,t,0) into a series as ¢ tends to infinity as follows

K#®(,t,0) = {nla +mg + — + 24t }exp((v/2 —a)t), (153)

where the coefficients of the expansion are functions of ¢. The leading term is given by

2 ksin(61t/2)
m (k+1)8 °

and é; by (22b). Subtracting K ?E}Zl)m from the integrand in (151), evaluating some integrals

*

n; = (154)

in closed form, using an integration cutoff point for the infinite integral and taking the

limit as z — 0, after some manipulations k( ) can be written as

K0, =2{ )+ 1.0+

+ %l [F(O (t + iy) ASh ) + F(O, (t— iy)Agg))]exp(vtﬂ)}, (155)
where,
tZ___ 2
r§.’§>(y,t) = {———(yQ " ;)Zn’{ + yz_t‘_ 5 }exp(fyt/z) (1562)

AY)
I (y,t) = K" (@, t)cos(ay)da
0

+ /A [KE(@1,0) — KS™(e,1,0)]cos(ep)da

32

+ /(h)F:gL)w(a, t)cos(ay)da. (156b)

32
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Agg) is an integration cutoff point, and the remaining terms in (156b) are given by

KW (o, 8) = KB (a,1,0) — (nfa + no)exp((v/2 — a)t), (157a)
(h)oo e ng nry
" (o t) = {E + e 4+ 4 a;}exp((’y/2 — a)t). (157b)

Note that second integral in (156b) will be neglected in numerical computation for a
sufficiently large value of Agg) and third integral is evaluated in closed form. The
expression used in the evaluation of this integral is given in Appendix A. k:(f)(O, y,t) and
k:(,,g)(o, y,t) are given by equations (148) and (155), respectively. Adding these two

equations, k32 (0, v, t) may be expressed in the following form,

k32(0a Y, t) - h32s(ya t) + h32f(y3 t)) (158)
where

1
hana(y,1) = ~r) (v, ) + 215 (v,1), (159%)

1 i i
baar () = 2{ 70,0+ 0.0 +
l . i . i
+ —;l [r <0, (y — u)Aggl) + I‘(O, (y + it) AY) )] + Iy arctan( — t/y)}

+ 2{J§§‘) (y,t) + % [P (o, (t+ iymgg)) + F(o, (t— z-y)Ag@)] exp('yt/2)}. (159b)

The terms in (159) are given explicitly by (149) and (156). Also, note that,

4
lim  hage(y,t) = = —. 1
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This term becomes singular as y and ¢ simultaneously tend to zero, and it is the standard
expression found for homogeneous materials. (see, for example, equation (23e) in Dag

and Erdogan [8]).
3.7 k33 (a:, Yy, t)

Referring to (16d), k33(z,y,t) can be written as

k(@ 9,8) = — = / B3> 2)exp(ip(y — 1))dp, (1612)

¢33(p, —waJ p)exp(s;z), (161b)

J=

where, s;, (j = 1,2,3,4) and 9;(p) are given by (13) and (19), respectively. Changing

the limits of integration in (161a), k33 can be written as

ks, t) = g7 [ [Kon(p,2)eos(oly =) + Koo, 2)sin(oly = )] dp,
(162)

where,

K331(pa x) = ¢33(P, iL‘) + ¢33( - P iL‘), (1633)

Kaza(p, x) = i(d33(p, ) — ¢33( — p, 2)). (163b)

In order to extract the singular terms we expand K33 and K33y into series as p — 00.

Following asymptotic expansions are obtained using MAPLE:

C
K5 (pyx) = {Clo TR }exp( — pz), (1642)
p P p*?
C C
K (p,z) = {020 + % + ;22— +oe ;"“ }exp( — pz), (164b)
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where the leading terms are given by
1 1
Clo = — 517([{ —_ 1), Cop = :2-(1{ + 1) (165a,b)

Subtracting the asymptotic expansions from the integrands in (162), using integration
cutoff points for the infinite integrals, evaluating some integrals in closed form and taking

the limit as z — 0, after some manipulations (162) is reduced to:

11 k=1

k33(09yat)={_'7_rt_y —77,{+1

6(t—y)+ hasf(y,t)}, (1662)

2 T .
hass(y,t) = m{ — enIn(Assi |t — ) — ez 551gn(t )

+ Jss1(91) + T8 }+ (166b)

where Ass; is an integration cutoff point, §() is the Dirac delta function,

Asat
Jea(wit) = [ [Kun(p,0) = cxo]cos(p(y — )dp

+ /Aoo [K331(P, 0) - K33 (p, 0)] cos(p(y —t))dp

+ [ K500 e~ cn /o] sostoly ~ 0)dp

Az lt—yl _
- Cn{’Yo +/ ES)M-———ldoz}, (167a)
0

«

A3z
Jaza(y,t) = /0 [K332(P, 0) — co0 — 021/4 sin(p(y — t))dp

+ / " [K332(P7 0) — K3l 0)] sin(p(y — t))dp

Aszp
+ /A [K55(0.0) ~ cx0 — e /o] sin(oly — ©))do, (167b)
332
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Asss is another integration cutoff point and +y, is the Euler number, [10]. Second integrals
in (167a) and (167b) will be neglected in numerical computation fc—>r sufficiently large
values of Ass; and Assp. Third integrals in (167) are evaluated in closed form. The
expressions used in the evaluation of these integrals are given in Appendix A. Also, note
that first two terms in (166a) are the singular terms and they are the standard expressions
obtained for homogeneous materials. (see, for example, equation (22c) in Dag and

Erdogan [8]).
The contact problem for decreasing stiffness (7 < 0)
Consider the sliding contact problem for a graded medium without a surface crack

and remote loading €;. The half-plane is thus subjected to a pair of unbalanced resultant

forces P and nP. The integral equation for this problem can be written as follows:

b
/ k0,3, )fs(0)dt = (), a<y<b, (168)

If we now consider (166) and (167) and expand K331 (p, 0) and K332(p, 0) into series as p

tends to zero, we find the following expansions:

K5 (p, 0) = bap* + byp* + bsp® 4 O(p%), (169a)
K$5,(p,0) = ap + agp® + asp° + O(p"), (169b)
where,
42 - K)n
by = ——=— 7
2 72(1 +K,)’ (1 Oa)

— 16n{x*(1 + sign(7)) — &(7 + 9sign(v)) + 10 + 16sign(v)}
74(s + 1)*(1 + sign(y))

by

, (170b)
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_2(k—1) _ 8(k — 3)(k(1 +sign(y)) — 4) .

vk +1)’ as 1+ 22 (1 + sign(7)) (170c,d)

Observing that sign(y) = 1 for v > 0, sign(y) = — 1 for v < 0 from (169) and (170) it
is seen that K33;(p,0) and K333(p, 0) are well behaved near p = 0, for v > 0. However,
for «v < 0 coefficients by and a3 (and possibly that of higher powers of p) become
unbounded and as a result k33 expressed by (166a) also becomes unbounded.
Consequently, it is seen that for a graded half plane with an exponentially decaying
stiffness the contact problem is not a well-posed problem. Physically, the problem that is
analogous to vy < 0 case is a homogeneous strip of finite thickness under an unbalanced
transverse load P (in thickness direction) which has no solution (see Ratwani and
Erdogan [9], for explanation). Thus for graded half-planes with or without a crack if

~ < 0 the contact problem has no solution.
4. Singular behavior of the solution

The integral equations of the problem are given by (65) and the kernels of the
equations are derived in Section 3. The asymptotic behaviors of the integrands are also
examined and singular terms are extracted. Using the expressions given in section 3,

integral equations given by (65) can be written as follows:

ir1 1
0y (2, 0)exp( — yz) = /0 [-7;2-:—:; + hus(z, ) + hllf(xat)] fit)dt +
b
+ / [hly,s(x,t) + hlgf(x,t)] fat)dt + Boeg =0, 0<z<d, (171a)
d
0zy(z,0)exp( — vz) = /0 [%tle_ + hos(z,t) + hoag(, t)] fo(t)dt +
b
+/ l:h23s(£€,t) + h23f($,t)] fg(t)dt =0, O0<z<d, (171b)
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4].L0 0 _ ¢
20 2 u0,) = [ (w0 + o) )t +

+ /Od [h32s(y, t) + haaf (9, t)] f(t)dt

k-1 bro1 1
nE )+ [ [~ 2 b ], e <u<t,

(171c)

where expressions for hi;s(z*,t) and hyjs(z*,t) (¢ =z for i=1,2 and z* =y for

i = 3) are given in Section 3. h;;s(z*,t) are the generalized Cauchy kernels (of the order

1/t) that become unbounded as the arguments z* and ¢ tend to the end point

simultaneously. hy;f(z*,t) are bounded Fredholm kernels. The singular terms are found

to be:
1({ 1 2t 4¢?
lim  hys(z,t) =1 h ) = — + - )
=0 115(2, 1) iﬁ‘}m 225(2, 1) 7r{t+x (t+m)2 (t+x)3}
0< (t,z) <d,

1 2t? 2t3
li h 1) = — - ,a<t<b0<z<d,
m, oot = G T p <t <bO<
. 1 2xt? 2tx?
lim h23s(x,t)=—-{n z 5 — ad 2}, a<t<bl<z<d,
(z,t)=0 T (82 + z2) (12 + z2)
. 1 4t?y
1 has(y,t) = — = ——2—, 0<t<d, b,
l(glt)-qo 315(Y, 1) @+ y2)2 < a<y<

1 48
lim & )= ——=s 0<t<d, <y<b
()0 32s(Y ) T2+ y2)2> a<y )

(1722)

(172b)

(172c)

(172d)

(172¢)

Note that the singular terms in the integral equations, i.e., the Cauchy singularities and

generalized Cauchy kernels given by (172) are also obtained for the crack/contact

problem in a homogeneous half-plane. If we compare (172) and equations (23a,e) which

are given in [8], we observe that the singular terms are identical except for the sign

changes for some terms, which are due to the different coordinate axes used in [8] and in
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this report. It may then be concluded that the singular behavior of the unknown functions
for the graded and homogeneous materials are identical. Hence, for t—he graded materials,
the singular behavior of the unknown functions is independent of the material
nonhomogeneity constants -y and pig ahd depend on the friction coefficient 7 and the
surface value of the Poisson's ratio (through elastic constant k) only. The details of the
function-theoretic analysis to determine the singular behavior of the unknowns are given

in [8]. Here we summarize the results, for the two cases a > O and a = 0.
a>0

In this case the kernels (172b-¢) are bounded in their corresponding closed intervals and

would not contribute to the singularities of the functions fi, f, and f3. We express f; as,

Fi(z) = 28 (d — o) Fi(x), 0<z<d, (173a)
fo(z) = x%(d - )M Fy(x), 0<z<d, (173b)
fily) =@w-a)*b-y)’Fy), a<y<d. (173¢)

The function-theoretic analysis to determine the exponents is described in [8], and

following equations are obtained,

9, =0, 8, =0, (1742)
cot(mA;) = 0, cot(mhg) =0, (A1 = Ay = —0.5), (174b)
K—1 k=1
t = = - —
cot(mw) T cot(mf) Ut (174c,d)
where acceptable roots are \; = — 0.5, Ao = — 0.5, R®(w) < 0 if @ is known and is a

sharp comer, R(w) > 0, if a is unknown and is a point of smooth contact. Similarly
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R(B) < 0if b is a known sharp corner and R(5) > 0 if b is unknown and the contact is

smooth.

In this case all kemels h;j;(z*,t) become unbounded as z¥—0 and t—0
simultaneously and contribute to the singularity of the unknown functions. Again, we

express the unknown functions as follows,

filz) = z*(d — 2)" Gy (), 0<z<d, (175a)
fo(z) = z°(d — )G (z), 0<z<d, (175b)
fa(y) = y*(b - v)°Gs(=), 0<y<b, (175¢)

The function-theoretic analysis carried out in [8] shows that

cot(mA;) =0, cot(mAz) = 0, (A1 = Ao = —0.5), (176a,b)

k—1
k+1

cot(nf) = —n (176¢)

As shown in [8] equation (56) and (57), the eigenvalue o and the expressions relating

G2(0) and G3(0) are given by

202 + 4o + 1 — cos(ma)
(k + 1)sin?(7a)

x (n(40? + 10a + 5 + (k — 1)cos(ra) + £(2a + 3)) + (k + V)sin(ra)) =0, (177a)

_ [ n(e+2)cos(ma/2) + (o + 1)sin(7a/2)
Gi(0)Vd = { 202 + 4a + 1 — cos(mar) }G3(O)bﬂ’ (1770)

_ n(a + 1)sin(ra/2) — acos(ra/2)
Gz(O)\/E - { 202 + 4o + 1 — cos(ma) }G?’(O)bﬁ' (177¢)
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From the symmetrically loaded half plane (y > 0) analogy it is known that a = 0 for
n=0 and at x = 0, y = 0 the stress state is bounded. In this case function-theoretic
analysis shows that in order not to have a logarithmic singularity in the integral equations

following condition must be satisfied,

1
Go(0)Vd = 7Ga(0’. (178)
5. Numerical solution of the integral equations

In this section, we will develop a numerical solution method for the case of a flat

stamp as shown in Figure 2. We first normalize the intervals in (171) by defining

Figure 2: The geometry of the crack/contact problem for a flat stamp.

d d d d b—a b+a
t = — —_ = — — =
27‘+ 5’ 2 2r+ 5 t 2 T+ 5 (179a,b,c)

in integrals involving f,(t), f2(t) and f3(t), respectively. Then we define the normalized

unknowns of the problem as follows:
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d d
h <§T+§)

¢1(r) = Plb—a) ’ —-1<r<i,
d d
( ___——fz(-z—r+§> —-1<r<1
¢2?")— P/(b—a) ’ r 3
fg(b;ar+b;a>
@3(r) = B/l—a) : -l<r<l.

The intervals (0, d) and (a, b) are also normalized by defining,

d

T = =5+ é, for eqn. (171a),
2 2
d

T= =8+ é, for eqn. (171b),
2 2
b— b

y=— a33 + _;'2”_2, for eqn. (171c).

(1802)

(180b)

(180c)

(181a)

(181b)

(181c)

Using (180) and (181), integral equations (171) and equilibrium condition (7) can be

written as

Y u(r

'IT -1T— 81

d +/ H11 81,7”)¢1(T d’f‘+/ H13 Sl, )¢3( )d?"+

EoG()
P/(b-a)

l/l ga(r d +/ Hyo(s9, 7)o (7 d7‘+/ Hys(s2,7)¢3(r)dr

17'_32

+

:0, —1<52<1,

1 1 -
/_1H31(S3,7‘)¢1(T)d7‘+/_1H32(S3,7‘)¢2(7‘)d7”—77 +1¢3(83) +

1
+ / HalssP)bs(r)dr =0,  —1<ss<1,
-1
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=0, -1<s5 <1,

(182a)

(182b)

(182c)




1
/ $3(s3)dsz = — 2, (182d)
_1 -

where H;;(s;,r) are given in Appendix C. Unknown function ¢;(r), (i = 1,2,3) can

now be expressed in the following form,

¢1(r):wl(r)iAlnP,E_l/z’al)(r), wi(r) = (1—r) 21+ 1), (183a)
n=0
ba(r) = s> AP, un(r) = (1= 1) (1, (1830
n=0
= (1) Agn P wy(r) = (1—r)°(1+7), (183¢)
n=0 '

where for a =0, a; = a3 = o and for a > 0 oy = 0, oy = w. Substituting (183c) into
(182d), Ag is obtained as

28+t IT(B + 1) (ag + 1)

Azg = —2/6, o = T8+ +2)

(184a,b)

Now, substituting (183) into (182), regularizing the singular parts of the equations using
the expressions given in Appendix D in [8] and truncating the infinite series at N,

following system of linear algebraic equations is obtained:

N N
E()(:'o
;mlln(sl)Aln + ;mISn(Sl)A3n = - Plo—a) mi30(81)Aso,
-1<s; <1, (185a)
mezzn s2)Agn + Zm23n $9)Asn = — maao(s2)Az, —1<s<1, (185b)

n=0

Zmam(ss Arp + stzn s3)Aon + Zm33n $3)Asn = — mi330(53)Aso,

n=0

—1<s3< 1. (185¢)
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The expressions for m;j,(s;), (i, j = 1,2,3) are given in Appendix C. Note thatifa = 0,
compatibility conditions expressed by (177) and (178) must also be considered.

Substituting (183) in (177) and (178) we obtain,

n>0

- arin 1 e

n=0

2ﬂ+1/22A P(ﬂa ( _ 1)

QL o

%) 2112y (1862)

al o

ZAQn 1/2a _ (

n=0 n=1

)
s
) 2ﬂ+1/2z 45, PP (— 1) =
s

g ) 9BHI/2 4, (186b)

n(a + 2)cos(ma/2) + (o + 1)sin(ma/2)

= — 186

file) 202 + 4a + 1 — cos(ma) ’ (186c)
n(a + 1)sin(ra/2) — acos(ma/2)

= - 186d
f2(2) 202 + 4o + 1 - cos(ma/2) (186d)
n=20

- (-1/2.0) Losrg (8.0) 164172

> AnPMAO(—1) = 22 ;Aana O(-1) = ;241 Aq, (187)

Equations (185) can be solved using the collocation technique. For a > 0, the number of
unknowns is (3N + 2). Roots of the Chebyshev polynomials are used as the collocation

points as follows:

sh—cos<;r—(]2721—3>, i=1,...,N+1, (188a)
2 — 1
szizcos<g(—1\;——;%>, i=1,...,N+1, (188b)

59




_ (28 — 1) .
s3z-cos( 5 >, i1=1,...,N. — (188c)

In the numerical solution for a = 0, the equations (186) and (187) are also considered.
After solving equations (185) for A;,, (i = 1,2, 3) the contact stresses 0..(0,y) and
044(0,y) and stress intensity factors at the crack tip (d, 0) may be evaluated by using the

results. The stress intensity factors are defined by and calculated from

k‘] = lim 2(-’3 - d)ayy(x) 0) =

r—d+0

- —zid 0/4;#—{(— 1) 2(d - x)g(v(:c, 07) — v(z,07)), (1892)

ki = lzl-rEHo 2(z — d)ogy(z,0) =

= —lim 2ulz) 2(d—x)—?—

L 5 (1 07) = u(z,07). (189b)

Using (189), the normalized stress intensity factors and the normal component of the

contact stress may be expressed as

kivd _ o_d N (~1/2,01)
5~ = —exp(7d)2 b_a;AlnPn (1), (190a)
kivd
”P\/—= — exp(yd)2% 7 ;A% —1/2e)(1), (190b)
b—a b+a
Ozz | 0, 5 83 + 5
— PBaz)
B/ a) = (1—s3)°(1+ 83)° nzzoAg, (s3). (191)
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6. Results and discussion

The calculated results in this report consist of the normal and in-plane components of
the stresses on the surface of the graded half plane in the absence of a crack, contact
stresses (022(0,¥), 024(0,9), a <y < b) and the stress intensity factors (s, k). First
we give some results, showing the surface stresses in a graded medium in the absence of a
crack and loaded by a sliding flat stamp. These results are shown in Figures 3-8. Contact
stresses in the absence of a crack are calculated by solving the integral equation given by
(168) and also considering the equilibrium condition given by (7). As shown in section
3.7, the contact problem with or without a crack has no solution for v < 0. Hence, in
Figures 3-8 results are given for positive values of the nonhomogeneity parameter 7.
Figures 3 and 4 show that, for n = 0 both 0,(0,%) and 0(0,y) are symmetric and they
have square-root singularities at y = a and y = b. 0, (0,y) vanishes outside the contact
area for v = 0, and as +y increases it becomes tensile at both ends of the contact region.
Figures 5 and 6 show the results for 7 = 0.4. It is seen that there is a greater stress
concentration near the trailing end of the stamp , y = a and |w| > |3|, w and [ being the
singularities at y = a and y = b respectively. The important conclusion one may draw
from Figure 6 is that at the trailing end of the stamp the in-plane component of the stress
0,4(0,7) is unbounded, tensile and discontinuous and has a singularity of the order
(a —y)*, where — w > 1/2. This implies that y = a is a likely location of surface crack
initiation. Similar results are also shown in Figures 7 and 8 for n = 0.8.

In Figures 9-16, stress intensity factors k; and kj; are shown as functions of the
relative stamp size b/d for a = 0, v = 0.25 and for various values of y and 7. In these
figures the stress intensity factors are normalized with respect to P / ﬁ also the
nonhomogeneity parameter is used in normalized form ~d. The circles in these figures are

the results obtained from the solution of the homogeneous half-plane problem as
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described in Dag and Erdogan [8]. It is shown in Figures 9 and 10 and in all the results
presented in this study that, the results obtained from the solution of t—he graded half plane
problem by letting d = 0.0001 and those obtained from the solution of the
homogeneous half plane problem are in very good agreement. That is, for all intents and
purposes these two sets of results are identical. Figures 9 and 10 show that for a = 0 and
n = 0, i.e., for the case of normal indentation, mode I stress intensity factors are negative
and mode 1II stress intensity factors are positive for all values of the nonhomogeneity
constant yd. Mode I stress intensity factors increase and mode II stress intensity factors
decrease as vd increases. Since k; is less than zero crack closure occurs and there is
contact between the crack faces. But the results can still be applicable and useful in
superposition with an uncoupled solution resulting, for example, from remote strain
loading €,,(z, Foo), [11], [12], provided the resultant ky is positive. Otherwise, the
problem needs to be formulated by taking into account the crack closure and determining
the closure distance from the condition of k; = 0. Figures 11 and 12 show the modes I
and II stress intensity factors for n = 0.2 and for a = 0. It is seen that, mode I stress
intensity factors increase as the friction coefficient increases but they are still negative for
this value of 1. Comparison of Figures 10 and 12 shows that mode II stress intensity
factors decrease as 7 decreases. It is also seen that, the effect of the nonhomogeneity
parameter on the stress intensity factors is quite significant. Again, the results for
~vd = 0.0001 are in exact agreement with the results obtained from the homogeneous
formulation. In Figures 13-14 and 15-16 modes I and II stress intensity factors are given
for n=0.4and n = 0.8, respectively. It can be observed that gradually k; becomes
positive and k;; becomes negative as the the tangential force increases. The contact stress
distribution is shown in Figures 17-20 for a = 0. In this case the stress singularities « and
3 at the end points a = 0 and bare given by (56) and (174d), respectively. Figure 17

shows that for 7 = 0 there is no singularity at the trailing end a = 0. In Figures 18 and
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19, contact stress distributions for 7 = 0.2 and 1 = 0.4 are given. For these relatively
small values of 71 the stress singularities at b are greater than ti’lOSC at a =0 (ie,
— > — @), hence the skewed distribution in Figures 18 and 19. On the other hand for
relatively large values of 7, |a| > || the trend is reversed and there is a greater stress
concentration near the end a = 0 (see Figure 20).

Figures 21-28 show the modes I and II stress intensity factors as functions of a /d for
a constant relative contact area length (b — a)/d = 0.1. These figures also show that, the
limiting cases of yd = 0.0001, are in very good agreement with the results obtained from
the solution of the homogeneous half plane problem. As seen in Figure 21, for
~d = 0.0001 mode I stress intensity factors are negative for all values of a/d, which
would lead to crack closure. It can also be seen that mode I stress intensity factors in a
graded medium are larger than those for the homogenous medium and for some values of
~vd and a/d, mode I stress intensity factors become positive. Figure 22 shows that mode II
stress intensity factors are positive for all values of a/d in a homogeneous medium, and
they decrease gradually as the nonhomogeneity parameter yd increases. Figures 23 and 24
show the results for n = 0.2. As the coefficient of friction, hence the tangential force
increases mode I stress intensity factors increase and mode II stress intensity factors
decrease. The results for n = 0.4 and n = 0.8 are shown in Figures 25-26 and 27-28
respectively. Figure 27 shows that for n = 0.8 mode I stress intensity factors are positive
for all values of vd.

Contact stress distribution for (b —a)/d = 0.1 and a/d = 0.4 are given in Figures
29-32. Figure 29 shows the results for = 0. Although there is no tangential force and
singularities are equal at both ends of the contact area, the stress distribution is not
exactly symmetric due to the effect of the surface crack in the graded medium. It can be

seen in Figures 30-32 that, as the coefficient of friction increases, singularity at the
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leading end i.e., — § decreases and there is a higher stress intensification at the trailing
end. —

Another set of results for the stress intensity factors are given in Figures 33-40 for a
relatively larger stamp size (b — a)/d = 1.0. The trends are similar as in Figures 21-28.
The contact stress distributions for (b—a)/d = 1.0 are shown in Figures 41-44 for

various values of the friction coefficient 7.
Some conclusions

1. Analytically the contact problem for a graded half-plane with exponentially decaying
stiffness is not a well-posed problem.

2. The trailing end of the sliding rigid stamp with friction is a likely location of surface
crack initiation due to greater stress concentration.

3. In the medium containing a surface crack and loaded by a sliding rigid stamp, the
mixed mode stress state at the crack tip is such that the cracks tend to be periodic and
curve backward.

4. In the coupled crack/contact problems for a graded medium stress singularities o,
and w are independent of the material nonhomogeneity constants y and o and depend on
the friction coefficient 7 and the surface value of the Poisson's ratio (through the elastic

constant ) only.
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Figure 3: The distribution of the contact stress on the surface of the graded medium
loaded by a flat stamp as shown in Figure 2 ,d =0, n =0, k = 2.
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Figure 4: The distribution of the in-plane stress on the surface of the graded medium
loaded by a flat stamp as shown in Figure 2,d =0, n =0, k = 2.
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Figure 5: The distribution of the contact stress on the surface of the graded medium
loaded by a flat stamp as shown in Figure 2 ,d = 0, n = 0.4, k = 2.
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Figure 6: The distribution of the in-plane stress on the surface of the graded medium
loaded by a flat stamp as shown in Figure 2 ,d =0, n =04, k = 2.
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Figure 7: The distribution of the contact stress on the surface of the graded medium
loaded by a flat stamp as shown in Figure 2,d = 0, n = 0.8, k = 2.
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Figure 8: The distribution of the in-plane stress on the surface of the graded medium
loaded by a flat stamp as shown in Figure 2,d =0, n = 0.8, K = 2.
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Figure 9: Mode I stress intensity factors for an edge crack in a graded half plane indented
by a flat stamp as shown in Figure 2, a = 0, n = 0, v = 0.25.
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Figure 10: Mode II stress intensity factors for an edge crack in a graded half plane
indented by a flat stamp as shown in Figure 2,a =0, n =0, v = 0.25.
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Figure 11: Mode I stress intensity factors for an edge crack in a graded half plane
indented by a flat stamp as shown in Figure 2, a = 0, n = 0.2, v = 0.25.
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Figure 12:Mode II stress intensity factors for an edge crack in a graded half plane
indented by a flat stamp as shown in Figure 2, a = 0, n = 0.2, v = 0.25.

70




X —

i — —— — o— — "

—
. —
 —— ——
 —— e |

0.00 s e

-0.06

_0_12---l...|‘,.4..,1..,
0 2 4 6 8 10

b/d
Figure 13: Mode I stress intensity factors for an edge crack in a graded half plane
indented by a flat stamp as shown in Figure 2, a = 0, 7 = 0.4, v = 0.25.
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Figure 14: Mode II stress intensity factors for an edge crack in a graded half plane
indented by a flat stamp as shown in Figure 2, a = 0, n = 0.4, v = 0.25.
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Figure 15: Mode I stress intensity factors for an edge crack in a graded half plane
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indented by a flat stamp as shown in Figure 2,a = 0, n = 0.8, v = 0.25.
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Figure 16: Mode II stress intensity factors for an edge crack in a graded half plane

4 6 8 10
b/d

indented by a flat stamp as shown in Figure 2, a = 0, n = 0.8, v = 0.25.

72




2y/b—1

10 05 00 0.5 - 1.0
0.0 e
N
0.5 BN _
02:(0, )
P/b -1.0 .
L —— yd=0.0001 \
15 ———yd=05 W
[ ——yd=1.0 i ]
| ——yd=20 iy
20t I

Figure 17: Contact stress distribution for a graded half plane with an edge crack and
indented by a flat stamp as shown in Figure 2,a = 0, n = 0, v = 0.25, b/d = 0.5.
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Figure 18: Contact stress distribution for a graded half plane with an edge crack and
indented by a flat stamp as shown in Figure 2, a = 0, n = 0.2, v = 0.25, b/d = 0.5.
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Figure 19: Contact stress distribution for a graded half plane with an edge crack and
indented by a flat stamp as shown in Figure 2, a = 0, n = 0.4, v = 0.25, b/d =04.
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Figure 20: Contact stress distribution for a graded half plane with an edge crack and
indented by a flat stamp as shown in Figure 2, a = 0, n = 0.8, v = 0.25, b/d =0.4.
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Figure 21: Mode [ stress intensity factors for an edge crack in a graded half plane
indented by a flat stamp as shown in Figure 2, (b — a)/d = 0.1, n =0, v = 0.25.
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Figure 22: Mode II stress intensity factors for an edge crack in a graded half plane
indented by a flat stamp as shown in Figure 2, (b — a)/d = 0.1, n = 0, v = 0.25.
75




0.05 T ] v r.r | r v r ] v r T

—_— _
= ——
—
——

0'00_ KA .. A MEERIRN TN

20,05 | ]
kivd

P o10f ]

2015 | ]

020

o 2 4 6 8§ 10

a/d
Figure 23: Mode I stress intensity factors for an edge crack in a graded half plane
indented by a flat stamp as shown in Figure 2, (b — a)/d = 0.1, n = 0.2, v = 0.25.
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Figure 24: Mode I stress intensity factors for an edge crack in a graded half plane
indented by a flat stamp as shown in Figure 2, (b — a)/d = 0.1, n = 0.2, v = 0.25.
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Figure 25: Mode I stress intensity factors for an edge crack in a graded half plane
indented by a flat stamp as shown in Figure 2, (b — a)/d = 0.1, n = 0.4, v = 0.25.
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Figure 26: Mode II stress intensity factors for an edge crack in a graded half plane
indented by a flat stamp as shown in Figure 2, (b — a)/d = 0.1, n = 0.4, v = 0.25.
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Figure 27: Mode I stress intensity factors for an edge crack in a graded half plane
indented by a flat stamp as shown in Figure 2, (b — a)/d = 0.1, n = 0.8, v = 0.25.
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Figure 28: Mode II stress intensity factors for an edge crack in a graded half plane
indented by a flat stamp as shown in Figure 2, (b — a)/d = 0.1, 7 = 0.8, v = 0.25.
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Figure 29: Contact stress distribution for a graded half plane with an edge crack and
indented by a flat stamp as shown in Figure 2, (b—a)/d =0.1, 7 =0, v = 0.25,
a/d=0.4.
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Figure 30: Contact stress distribution for a graded half plane with an edge crack and
‘indented by a flat stamp as shown in Figure 2, (b—a)/d =0.1, n = 0.2, v = 0.25,
a/d=0.4.
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Figure 31: Contact stress distribution for a graded half plane with an edge crack and
indented by a flat stamp as shown in Figure 2, (b—a)/d =0.1, n =04, v = 0.25,

a/d =04.
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Figure 32: Contact stress distribution for a graded half plane with an edge crack and
indented by a flat stamp as shown in Figure 2, (b —a)/d =0.1, 7= 0.8, v = 0.25,

a/d =0.4.
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Figure 33: Mode [ stress intensity factors for an edge crack in a graded half plane
indented by a flat stamp as shown in Figure 2, (b — a)/d = 1.0, n = 0, v = 0.25.
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Figure 34: Mode II stress intensity factors for an edge crack in a graded half plane
indented by a flat stamp as shown in Figure 2, (b — a)/d = 1.0, n = 0, v = 0.25.
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Figure 35: Mode I stress intensity factors for an edge crack in a graded half plane
indented by a flat stamp as shown in Figure 2, (b — a)/d = 1.0, n = 0.2, v = 0.25.
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Figure 36: Mode II stress intensity factors for an edge crack in a graded half plane
indented by a flat stamp as shown in Figure 2, (b — a)/d = 1.0, n = 0.2, v = 0.25.
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Figure 37: Mode I stress intensity factors for an edge crack in a graded half plane
indented by a flat stamp as shown in Figure 2, (b — a)/d = 1.0, n = 0.4, v = 0.25.

Figure 38: Mode II stress intensity factors for an edge crack in a graded half plane
indented by a flat stamp as shown in Figure 2, (b — a)/d = 1.0, n = 0.4, v = 0.25.

&3




0.24 e
- —— vd=0.0001" |

0.18
krvd 0.12
P

0.06

0.00 —

Figure 39: Mode I stress intensity factors for an edge crack in a graded half plane
indented by a flat stamp as shown in Figure 2, (b — a)/d = 1.0, n = 0.8, v = 0.25.

0.15 T

0.10 &

0.05

kirv/d 0.00 G
P

<0.05 |

010\ :
-0.15 I SN SR PR U B L
o 1 2 3 4 5 6

a/d
Figure 40: Mode II stress intensity factors for an edge crack in a graded half plane
indented by a flat stamp as shown in Figure 2, (b — a)/d = 1.0, n = 0.8, v = 0.25.
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Figure 41: Contact stress distribution for a graded half plane with an edge crack and

indented by a flat stamp as shown in Figure 2, (b—a)/d =1.0, n =0, v = 0.25,
a/d =0.4.
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Figure 42: Contact stress distribution for a graded half plane with an edge crack and
indented by a flat stamp as shown in Figure 2, (b —a)/d = 1.0, 7 =10.2, v = 0.25,
a/d =0.4.
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Figure 43: Contact stress distribution for a graded half plane with an edge crack and
indented by a flat stamp as shown in Figure 2, (b —a)/d = 1.0, n = 0.4, v = 0.25,
a/d =04.
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Figure 44: Contact stress distribution for a graded half plane with an edge crack and
indented by a flat stamp as shown in Figure 2, (b—a)/d = 1.0, n = 0.8, v = 0.25,
a/d =04.
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APPENDIX A

Some Useful Integrals

Here, we give the expressions that are used to evaluate the integrals involving the
asymptotic expansions of the integrands of the kernels. There are three types of integrals

involving the asymptotic expansions. The expressions for each type are given below.
Integrals of type 1

In this case, the integrals that we want to evaluate are in the following form,
> 1
C,= / —cos(pu)dp, n=12,3...,N, (Fla)
AP
*1
S, = / —sin(pu)dp, n=123...,N. (F1b)
A P
For n = 1, following results are obtained using MAPLE,
Ci = — Ci(Aful), (F2a)
. U .
S = sign(w) (5 . Sl(A|u|)), (F2b)

where Ci() and Si() are cosine and sine integrals, respectively, and they are defined by

Ci(z) = vy + In(z) + /O“”_c_os(%a)—_lda’ (F3a)
Si(z) = / ’ Sin(io‘)da. (F3b)
0

and the Euler constant is vy = 0.5772156649. For n > 1, integrating (Fla) and (F1b) by

parts the following general recursive relations are obtained:
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1 cos(ud) u

Cn= — T A T nSn_l, n>1 — (F4a)
_ 1 sin(ud) wu
Sp = ~ 1 A T nCn_l, n> 1. (F4b)

Following result is also used in the integration of asymptotic expressions,

@ sin(pu T
/ —(l—)—ldp = —2-31gn(u). (F5)
0 P
Integrals of type 2

In this case, we consider the following integral:
*1
R, = / ;T;exp(pu)d,o, n=123...,N, [u < 0]. (F6)
A
For n = 1, following result is obtained using MAPLE,

R1 = El( - A’U,), El(Z) = — El( — Z), (F7a,b)

where Ei() is the exponential integral function. For n > 1, following expression is used

which is given by Gradshteyn and Ryzhik [10]:

/ “exp(—pa)ds _ _jenpEi(—pd) | exp(- pA)"i (-1)f ’“A’“
A k=0

n(n—1)...(n—k)’
[p> 0], (F8)

(F8) reduces to (F7) forn = 1.
Integrals of type 3

Type 3 integrals are in the following form:
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e 9]
A -

Sp = / pinsin(pv)exp(pu)dp, n=12,3...,N, [U < 0]- (F9b)
A

(F9) are evaluated using the following expressions which are given by Gradshteyn and

Ryzhik [10]:

/oox"‘lexp( — Bz)cos(éz)dz = %(,8 +48) T*T(u, (B + 16)A)
A

(8—16)"T(u, (B-16)A), [R(B) > [S(8)I], (F10a)

[NCRS

+

/Aooac“‘lexp( — Bz)sin(bz)dz = —;—(,6 +18)*T(u, (B + i6)A)

- %(ﬁ —i8) T (u, (B - i6)4), [R(B) > [S(d)I], (F10b)

where I'(,) is the incomplete Gamma function. Following result is also used in the

integration of asymptotic expressions,

/oo—l—sin(pv)exp(pu)dp = — arctan(g) u<0 (F11)
0o P u/’ .
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APPENDIX B

Some leading terms in asymptotic expansions

Here, we give the leading terms of asymptotic expansions K (w,y), K5 (w,y) and

K ég)l (w,y), K. §;2 (w,y) which are given by equations (129) and (147), respectively.

. ocos(yy/2)(exp( — biy) — L)exp(81y/2)
g = —2 Tr )b , (Gla)
_sin(yy/2)(exp( — &1y) — L)exp(61y/2)
91 = 2 T+ ), , (G1b)
I = - 2sin(ﬂr:t//2)(exp((1 ;_513)) - 1)6Xp(61y/2), (Glo)
« _ _ o008(yy/2)(exp( — b1y) — exp(biy/2)
B =—2 P (G1d)
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APPENDIX C

Kernels of the integral equations

In this Appendix, we give the transformed form of the kernels that are used in equations

(182a,c) and the terms that are used in equations (185).

d
Hy(sy,7) = §(H11s(31,7“) + Hyif(s1,7)),

b—
2

a
His(s1,r) = (Hy3s(s1,7) + Hizg(s1,7)),

d
Hp(sz, ) = =(Haps(s2,7) + Hang(s2, 7)),

2
b—~a

Hys(s1,7) = (Hoss(s2,7) 4+ Hizg(s2,7)),
d

Hs (s3,7) = §(H31_5(33,7‘) + Haif(s3,7)),
d

Hso(ss,r) = —2‘(H325(83,7‘) + Hsyf(s3,7)),
b—a

Hss(ss,r) = 5 Hijzs(ss, ),

where,

H;js(siyT) = hijs(z, 1),

Hiif(si,1) = hijs(, t),
d d

-2—Si+§, Z=1,2

b—a8.+b+a
2 2’

91

(Hla)

(H1b)

(H1c)

(H1d)

(Hle)

(H1f)

(Hlg)

(H2a)

(H2b)

(H3a2)




d d .
§T+§7 3:112
t = (H3b)
b—a b+a .
5 T+ 5 j=3

The terms used in equations (185) are given below:

207D (~1/2)T(n+ o1 +1) y
ml(n+1/2+ o)

m11n(51) =
x F(n+1, n+1/2—a1;3/2;(1 - sl)/2)
1
+ / (1- r)’1/2(1 + r)alPTg_l/z’al)(r)Hn(sl, r)dr, (H4a)
-1

1
mysn(s1) = / (1= r) (L) PP (1) B, ) (H4b)

200120 ( — 1/2)T(n+ oy + 1) y
mT(n+1/2+ a;)

m22n(32) = -

xF(nt1, —n+1/2—0133/2 (1= 2)/2) +

1
+ / (1—7) Y21 + r)® PCYV290(r) Hyy (59, 7)dr, (H4c)
-1
1
rgn(52) = / (1= )P (1 + )% PB22) (1) Hyg (55, r)dr, (H4d)
-1
1
m31n(83) = / (1- 'r)_l/2(1 + r)alP,E'l/z’al)(r)Hgl(s;),,r)d’r, (H4e)
-1
1
masm(ss) = | (1 —7)"Y2(1+ 1) BY2e0) (1) Hyy (53, 7)dr, (H41)
-1

92




_ 25teD(B)M(n+ oy +1)
Masn(s3) = T+ +as+1)

xF(n+1, -n—ﬁ—az;l—ﬂ;(1—33)/2) +

1
+ / (1= 1)P(1 + 1) P8 (1) Hyo (53, r)dr, (H4e)
-1

Note that if ap + = — 1,0, or 1 (H4e) reduces to

_ 2(a2+ﬁ) P(_ﬁ’_QZ) ' 1 B 1 azp(ﬂ,az) H d
Masn(s3) = sn(=B) (ot §)(53) F _1( = 1) (1 + ) Py (r) Has(ss, 7)dr.
(H52)
In this case, if (ap + 3) = — 1 and n = 0 we have
1
maszo(s3) = / (1=r)2(1 + r)*® Has(ss, 7)dr. (H5b)
-1
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